Annotation of imach/src/imach.c, revision 1.41.2.2
1.41.2.2! brouard 1: /* $Id: imach.c,v 1.41.2.1 2003/06/12 10:43:20 brouard Exp $
1.24 lievre 2: Interpolated Markov Chain
1.22 brouard 3:
4: Short summary of the programme:
5:
6: This program computes Healthy Life Expectancies from
7: cross-longitudinal data. Cross-longitudinal data consist in: -1- a
8: first survey ("cross") where individuals from different ages are
9: interviewed on their health status or degree of disability (in the
10: case of a health survey which is our main interest) -2- at least a
11: second wave of interviews ("longitudinal") which measure each change
12: (if any) in individual health status. Health expectancies are
13: computed from the time spent in each health state according to a
14: model. More health states you consider, more time is necessary to reach the
15: Maximum Likelihood of the parameters involved in the model. The
16: simplest model is the multinomial logistic model where pij is the
1.39 lievre 17: probability to be observed in state j at the second wave
1.22 brouard 18: conditional to be observed in state i at the first wave. Therefore
19: the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
20: 'age' is age and 'sex' is a covariate. If you want to have a more
21: complex model than "constant and age", you should modify the program
22: where the markup *Covariates have to be included here again* invites
23: you to do it. More covariates you add, slower the
24: convergence.
25:
26: The advantage of this computer programme, compared to a simple
27: multinomial logistic model, is clear when the delay between waves is not
28: identical for each individual. Also, if a individual missed an
29: intermediate interview, the information is lost, but taken into
30: account using an interpolation or extrapolation.
31:
32: hPijx is the probability to be observed in state i at age x+h
33: conditional to the observed state i at age x. The delay 'h' can be
34: split into an exact number (nh*stepm) of unobserved intermediate
35: states. This elementary transition (by month or quarter trimester,
36: semester or year) is model as a multinomial logistic. The hPx
37: matrix is simply the matrix product of nh*stepm elementary matrices
38: and the contribution of each individual to the likelihood is simply
39: hPijx.
1.2 lievre 40:
41: Also this programme outputs the covariance matrix of the parameters but also
42: of the life expectancies. It also computes the prevalence limits.
43:
44: Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
45: Institut national d'études démographiques, Paris.
46: This software have been partly granted by Euro-REVES, a concerted action
47: from the European Union.
48: It is copyrighted identically to a GNU software product, ie programme and
49: software can be distributed freely for non commercial use. Latest version
50: can be accessed at http://euroreves.ined.fr/imach .
51: **********************************************************************/
52:
53: #include <math.h>
54: #include <stdio.h>
55: #include <stdlib.h>
56: #include <unistd.h>
57:
58: #define MAXLINE 256
1.35 lievre 59: #define GNUPLOTPROGRAM "wgnuplot"
60: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.2 lievre 61: #define FILENAMELENGTH 80
62: /*#define DEBUG*/
1.41.2.1 brouard 63:
64: /*#define windows*/
1.5 lievre 65: #define GLOCK_ERROR_NOPATH -1 /* empty path */
66: #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */
67:
1.2 lievre 68: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
69: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
70:
71: #define NINTERVMAX 8
72: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
73: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
74: #define NCOVMAX 8 /* Maximum number of covariates */
1.3 lievre 75: #define MAXN 20000
1.2 lievre 76: #define YEARM 12. /* Number of months per year */
77: #define AGESUP 130
78: #define AGEBASE 40
79:
80:
1.21 lievre 81: int erreur; /* Error number */
1.2 lievre 82: int nvar;
1.8 lievre 83: int cptcovn, cptcovage=0, cptcoveff=0,cptcov;
1.2 lievre 84: int npar=NPARMAX;
85: int nlstate=2; /* Number of live states */
86: int ndeath=1; /* Number of dead states */
1.34 brouard 87: int ncovmodel, ncovcol; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.15 lievre 88: int popbased=0;
1.2 lievre 89:
90: int *wav; /* Number of waves for this individuual 0 is possible */
91: int maxwav; /* Maxim number of waves */
1.8 lievre 92: int jmin, jmax; /* min, max spacing between 2 waves */
1.2 lievre 93: int mle, weightopt;
94: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
95: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
1.8 lievre 96: double jmean; /* Mean space between 2 waves */
1.2 lievre 97: double **oldm, **newm, **savm; /* Working pointers to matrices */
98: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.27 lievre 99: FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.25 lievre 100: FILE *ficgp,*ficresprob,*ficpop;
1.2 lievre 101: FILE *ficreseij;
102: char filerese[FILENAMELENGTH];
103: FILE *ficresvij;
104: char fileresv[FILENAMELENGTH];
105: FILE *ficresvpl;
106: char fileresvpl[FILENAMELENGTH];
107:
108: #define NR_END 1
109: #define FREE_ARG char*
110: #define FTOL 1.0e-10
111:
112: #define NRANSI
113: #define ITMAX 200
114:
115: #define TOL 2.0e-4
116:
117: #define CGOLD 0.3819660
118: #define ZEPS 1.0e-10
119: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
120:
121: #define GOLD 1.618034
122: #define GLIMIT 100.0
123: #define TINY 1.0e-20
124:
125: static double maxarg1,maxarg2;
126: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
127: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
1.25 lievre 128:
1.2 lievre 129: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
130: #define rint(a) floor(a+0.5)
131:
132: static double sqrarg;
133: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
134: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
135:
136: int imx;
137: int stepm;
138: /* Stepm, step in month: minimum step interpolation*/
139:
1.36 brouard 140: int estepm;
141: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
142:
1.2 lievre 143: int m,nb;
1.6 lievre 144: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
1.2 lievre 145: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.13 lievre 146: double **pmmij, ***probs, ***mobaverage;
1.19 lievre 147: double dateintmean=0;
1.2 lievre 148:
149: double *weight;
150: int **s; /* Status */
151: double *agedc, **covar, idx;
1.7 lievre 152: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.2 lievre 153:
154: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
155: double ftolhess; /* Tolerance for computing hessian */
156:
1.7 lievre 157: /**************** split *************************/
1.22 brouard 158: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
1.5 lievre 159: {
160: char *s; /* pointer */
161: int l1, l2; /* length counters */
162:
163: l1 = strlen( path ); /* length of path */
164: if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
1.22 brouard 165: #ifdef windows
1.5 lievre 166: s = strrchr( path, '\\' ); /* find last / */
1.22 brouard 167: #else
168: s = strrchr( path, '/' ); /* find last / */
169: #endif
1.5 lievre 170: if ( s == NULL ) { /* no directory, so use current */
171: #if defined(__bsd__) /* get current working directory */
172: extern char *getwd( );
173:
174: if ( getwd( dirc ) == NULL ) {
175: #else
176: extern char *getcwd( );
177:
178: if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
179: #endif
180: return( GLOCK_ERROR_GETCWD );
181: }
182: strcpy( name, path ); /* we've got it */
183: } else { /* strip direcotry from path */
184: s++; /* after this, the filename */
185: l2 = strlen( s ); /* length of filename */
186: if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
187: strcpy( name, s ); /* save file name */
188: strncpy( dirc, path, l1 - l2 ); /* now the directory */
189: dirc[l1-l2] = 0; /* add zero */
190: }
191: l1 = strlen( dirc ); /* length of directory */
1.22 brouard 192: #ifdef windows
1.5 lievre 193: if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
1.22 brouard 194: #else
195: if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
196: #endif
197: s = strrchr( name, '.' ); /* find last / */
198: s++;
199: strcpy(ext,s); /* save extension */
200: l1= strlen( name);
201: l2= strlen( s)+1;
202: strncpy( finame, name, l1-l2);
203: finame[l1-l2]= 0;
1.5 lievre 204: return( 0 ); /* we're done */
205: }
206:
207:
1.2 lievre 208: /******************************************/
209:
210: void replace(char *s, char*t)
211: {
212: int i;
213: int lg=20;
214: i=0;
215: lg=strlen(t);
216: for(i=0; i<= lg; i++) {
217: (s[i] = t[i]);
218: if (t[i]== '\\') s[i]='/';
219: }
220: }
221:
222: int nbocc(char *s, char occ)
223: {
224: int i,j=0;
225: int lg=20;
226: i=0;
227: lg=strlen(s);
228: for(i=0; i<= lg; i++) {
229: if (s[i] == occ ) j++;
230: }
231: return j;
232: }
233:
234: void cutv(char *u,char *v, char*t, char occ)
235: {
1.6 lievre 236: int i,lg,j,p=0;
1.2 lievre 237: i=0;
238: for(j=0; j<=strlen(t)-1; j++) {
1.3 lievre 239: if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
1.2 lievre 240: }
241:
242: lg=strlen(t);
243: for(j=0; j<p; j++) {
244: (u[j] = t[j]);
245: }
1.6 lievre 246: u[p]='\0';
1.2 lievre 247:
248: for(j=0; j<= lg; j++) {
249: if (j>=(p+1))(v[j-p-1] = t[j]);
250: }
251: }
252:
253: /********************** nrerror ********************/
254:
255: void nrerror(char error_text[])
256: {
257: fprintf(stderr,"ERREUR ...\n");
258: fprintf(stderr,"%s\n",error_text);
259: exit(1);
260: }
261: /*********************** vector *******************/
262: double *vector(int nl, int nh)
263: {
264: double *v;
265: v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
266: if (!v) nrerror("allocation failure in vector");
267: return v-nl+NR_END;
268: }
269:
270: /************************ free vector ******************/
271: void free_vector(double*v, int nl, int nh)
272: {
273: free((FREE_ARG)(v+nl-NR_END));
274: }
275:
276: /************************ivector *******************************/
277: int *ivector(long nl,long nh)
278: {
279: int *v;
280: v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
281: if (!v) nrerror("allocation failure in ivector");
282: return v-nl+NR_END;
283: }
284:
285: /******************free ivector **************************/
286: void free_ivector(int *v, long nl, long nh)
287: {
288: free((FREE_ARG)(v+nl-NR_END));
289: }
290:
291: /******************* imatrix *******************************/
292: int **imatrix(long nrl, long nrh, long ncl, long nch)
293: /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
294: {
295: long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
296: int **m;
297:
298: /* allocate pointers to rows */
299: m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
300: if (!m) nrerror("allocation failure 1 in matrix()");
301: m += NR_END;
302: m -= nrl;
303:
304:
305: /* allocate rows and set pointers to them */
306: m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
307: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
308: m[nrl] += NR_END;
309: m[nrl] -= ncl;
310:
311: for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
312:
313: /* return pointer to array of pointers to rows */
314: return m;
315: }
316:
317: /****************** free_imatrix *************************/
318: void free_imatrix(m,nrl,nrh,ncl,nch)
319: int **m;
320: long nch,ncl,nrh,nrl;
321: /* free an int matrix allocated by imatrix() */
322: {
323: free((FREE_ARG) (m[nrl]+ncl-NR_END));
324: free((FREE_ARG) (m+nrl-NR_END));
325: }
326:
327: /******************* matrix *******************************/
328: double **matrix(long nrl, long nrh, long ncl, long nch)
329: {
330: long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
331: double **m;
332:
333: m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
334: if (!m) nrerror("allocation failure 1 in matrix()");
335: m += NR_END;
336: m -= nrl;
337:
338: m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
339: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
340: m[nrl] += NR_END;
341: m[nrl] -= ncl;
342:
343: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
344: return m;
345: }
346:
347: /*************************free matrix ************************/
348: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
349: {
350: free((FREE_ARG)(m[nrl]+ncl-NR_END));
351: free((FREE_ARG)(m+nrl-NR_END));
352: }
353:
354: /******************* ma3x *******************************/
355: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
356: {
357: long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
358: double ***m;
359:
360: m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
361: if (!m) nrerror("allocation failure 1 in matrix()");
362: m += NR_END;
363: m -= nrl;
364:
365: m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
366: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
367: m[nrl] += NR_END;
368: m[nrl] -= ncl;
369:
370: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
371:
372: m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
373: if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
374: m[nrl][ncl] += NR_END;
375: m[nrl][ncl] -= nll;
376: for (j=ncl+1; j<=nch; j++)
377: m[nrl][j]=m[nrl][j-1]+nlay;
378:
379: for (i=nrl+1; i<=nrh; i++) {
380: m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
381: for (j=ncl+1; j<=nch; j++)
382: m[i][j]=m[i][j-1]+nlay;
383: }
384: return m;
385: }
386:
387: /*************************free ma3x ************************/
388: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
389: {
390: free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
391: free((FREE_ARG)(m[nrl]+ncl-NR_END));
392: free((FREE_ARG)(m+nrl-NR_END));
393: }
394:
395: /***************** f1dim *************************/
396: extern int ncom;
397: extern double *pcom,*xicom;
398: extern double (*nrfunc)(double []);
399:
400: double f1dim(double x)
401: {
402: int j;
403: double f;
404: double *xt;
405:
406: xt=vector(1,ncom);
407: for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
408: f=(*nrfunc)(xt);
409: free_vector(xt,1,ncom);
410: return f;
411: }
412:
413: /*****************brent *************************/
414: double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
415: {
416: int iter;
417: double a,b,d,etemp;
418: double fu,fv,fw,fx;
419: double ftemp;
420: double p,q,r,tol1,tol2,u,v,w,x,xm;
421: double e=0.0;
422:
423: a=(ax < cx ? ax : cx);
424: b=(ax > cx ? ax : cx);
425: x=w=v=bx;
426: fw=fv=fx=(*f)(x);
427: for (iter=1;iter<=ITMAX;iter++) {
428: xm=0.5*(a+b);
429: tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
430: /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
431: printf(".");fflush(stdout);
432: #ifdef DEBUG
433: printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
434: /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
435: #endif
436: if (fabs(x-xm) <= (tol2-0.5*(b-a))){
437: *xmin=x;
438: return fx;
439: }
440: ftemp=fu;
441: if (fabs(e) > tol1) {
442: r=(x-w)*(fx-fv);
443: q=(x-v)*(fx-fw);
444: p=(x-v)*q-(x-w)*r;
445: q=2.0*(q-r);
446: if (q > 0.0) p = -p;
447: q=fabs(q);
448: etemp=e;
449: e=d;
450: if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
451: d=CGOLD*(e=(x >= xm ? a-x : b-x));
452: else {
453: d=p/q;
454: u=x+d;
455: if (u-a < tol2 || b-u < tol2)
456: d=SIGN(tol1,xm-x);
457: }
458: } else {
459: d=CGOLD*(e=(x >= xm ? a-x : b-x));
460: }
461: u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
462: fu=(*f)(u);
463: if (fu <= fx) {
464: if (u >= x) a=x; else b=x;
465: SHFT(v,w,x,u)
466: SHFT(fv,fw,fx,fu)
467: } else {
468: if (u < x) a=u; else b=u;
469: if (fu <= fw || w == x) {
470: v=w;
471: w=u;
472: fv=fw;
473: fw=fu;
474: } else if (fu <= fv || v == x || v == w) {
475: v=u;
476: fv=fu;
477: }
478: }
479: }
480: nrerror("Too many iterations in brent");
481: *xmin=x;
482: return fx;
483: }
484:
485: /****************** mnbrak ***********************/
486:
487: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
488: double (*func)(double))
489: {
490: double ulim,u,r,q, dum;
491: double fu;
492:
493: *fa=(*func)(*ax);
494: *fb=(*func)(*bx);
495: if (*fb > *fa) {
496: SHFT(dum,*ax,*bx,dum)
497: SHFT(dum,*fb,*fa,dum)
498: }
499: *cx=(*bx)+GOLD*(*bx-*ax);
500: *fc=(*func)(*cx);
501: while (*fb > *fc) {
502: r=(*bx-*ax)*(*fb-*fc);
503: q=(*bx-*cx)*(*fb-*fa);
504: u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
505: (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
506: ulim=(*bx)+GLIMIT*(*cx-*bx);
507: if ((*bx-u)*(u-*cx) > 0.0) {
508: fu=(*func)(u);
509: } else if ((*cx-u)*(u-ulim) > 0.0) {
510: fu=(*func)(u);
511: if (fu < *fc) {
512: SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
513: SHFT(*fb,*fc,fu,(*func)(u))
514: }
515: } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
516: u=ulim;
517: fu=(*func)(u);
518: } else {
519: u=(*cx)+GOLD*(*cx-*bx);
520: fu=(*func)(u);
521: }
522: SHFT(*ax,*bx,*cx,u)
523: SHFT(*fa,*fb,*fc,fu)
524: }
525: }
526:
527: /*************** linmin ************************/
528:
529: int ncom;
530: double *pcom,*xicom;
531: double (*nrfunc)(double []);
532:
533: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
534: {
535: double brent(double ax, double bx, double cx,
536: double (*f)(double), double tol, double *xmin);
537: double f1dim(double x);
538: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
539: double *fc, double (*func)(double));
540: int j;
541: double xx,xmin,bx,ax;
542: double fx,fb,fa;
543:
544: ncom=n;
545: pcom=vector(1,n);
546: xicom=vector(1,n);
547: nrfunc=func;
548: for (j=1;j<=n;j++) {
549: pcom[j]=p[j];
550: xicom[j]=xi[j];
551: }
552: ax=0.0;
553: xx=1.0;
554: mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
555: *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
556: #ifdef DEBUG
557: printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
558: #endif
559: for (j=1;j<=n;j++) {
560: xi[j] *= xmin;
561: p[j] += xi[j];
562: }
563: free_vector(xicom,1,n);
564: free_vector(pcom,1,n);
565: }
566:
567: /*************** powell ************************/
568: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
569: double (*func)(double []))
570: {
571: void linmin(double p[], double xi[], int n, double *fret,
572: double (*func)(double []));
573: int i,ibig,j;
574: double del,t,*pt,*ptt,*xit;
575: double fp,fptt;
576: double *xits;
577: pt=vector(1,n);
578: ptt=vector(1,n);
579: xit=vector(1,n);
580: xits=vector(1,n);
581: *fret=(*func)(p);
582: for (j=1;j<=n;j++) pt[j]=p[j];
583: for (*iter=1;;++(*iter)) {
584: fp=(*fret);
585: ibig=0;
586: del=0.0;
587: printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
588: for (i=1;i<=n;i++)
589: printf(" %d %.12f",i, p[i]);
590: printf("\n");
591: for (i=1;i<=n;i++) {
592: for (j=1;j<=n;j++) xit[j]=xi[j][i];
593: fptt=(*fret);
594: #ifdef DEBUG
595: printf("fret=%lf \n",*fret);
596: #endif
597: printf("%d",i);fflush(stdout);
598: linmin(p,xit,n,fret,func);
599: if (fabs(fptt-(*fret)) > del) {
600: del=fabs(fptt-(*fret));
601: ibig=i;
602: }
603: #ifdef DEBUG
604: printf("%d %.12e",i,(*fret));
605: for (j=1;j<=n;j++) {
606: xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
607: printf(" x(%d)=%.12e",j,xit[j]);
608: }
609: for(j=1;j<=n;j++)
610: printf(" p=%.12e",p[j]);
611: printf("\n");
612: #endif
613: }
614: if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
615: #ifdef DEBUG
616: int k[2],l;
617: k[0]=1;
618: k[1]=-1;
619: printf("Max: %.12e",(*func)(p));
620: for (j=1;j<=n;j++)
621: printf(" %.12e",p[j]);
622: printf("\n");
623: for(l=0;l<=1;l++) {
624: for (j=1;j<=n;j++) {
625: ptt[j]=p[j]+(p[j]-pt[j])*k[l];
626: printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
627: }
628: printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
629: }
630: #endif
631:
632:
633: free_vector(xit,1,n);
634: free_vector(xits,1,n);
635: free_vector(ptt,1,n);
636: free_vector(pt,1,n);
637: return;
638: }
639: if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
640: for (j=1;j<=n;j++) {
641: ptt[j]=2.0*p[j]-pt[j];
642: xit[j]=p[j]-pt[j];
643: pt[j]=p[j];
644: }
645: fptt=(*func)(ptt);
646: if (fptt < fp) {
647: t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
648: if (t < 0.0) {
649: linmin(p,xit,n,fret,func);
650: for (j=1;j<=n;j++) {
651: xi[j][ibig]=xi[j][n];
652: xi[j][n]=xit[j];
653: }
654: #ifdef DEBUG
655: printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
656: for(j=1;j<=n;j++)
657: printf(" %.12e",xit[j]);
658: printf("\n");
659: #endif
660: }
661: }
662: }
663: }
664:
665: /**** Prevalence limit ****************/
666:
667: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
668: {
669: /* Computes the prevalence limit in each live state at age x by left multiplying the unit
670: matrix by transitions matrix until convergence is reached */
671:
672: int i, ii,j,k;
673: double min, max, maxmin, maxmax,sumnew=0.;
674: double **matprod2();
675: double **out, cov[NCOVMAX], **pmij();
676: double **newm;
677: double agefin, delaymax=50 ; /* Max number of years to converge */
678:
679: for (ii=1;ii<=nlstate+ndeath;ii++)
680: for (j=1;j<=nlstate+ndeath;j++){
681: oldm[ii][j]=(ii==j ? 1.0 : 0.0);
682: }
1.6 lievre 683:
684: cov[1]=1.;
685:
686: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.2 lievre 687: for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
688: newm=savm;
689: /* Covariates have to be included here again */
1.6 lievre 690: cov[2]=agefin;
691:
692: for (k=1; k<=cptcovn;k++) {
1.7 lievre 693: cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.35 lievre 694: /* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
1.6 lievre 695: }
1.35 lievre 696: for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.7 lievre 697: for (k=1; k<=cptcovprod;k++)
698: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
699:
700: /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
701: /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
1.35 lievre 702: /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.2 lievre 703: out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
704:
705: savm=oldm;
706: oldm=newm;
707: maxmax=0.;
708: for(j=1;j<=nlstate;j++){
709: min=1.;
710: max=0.;
711: for(i=1; i<=nlstate; i++) {
712: sumnew=0;
713: for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
714: prlim[i][j]= newm[i][j]/(1-sumnew);
715: max=FMAX(max,prlim[i][j]);
716: min=FMIN(min,prlim[i][j]);
717: }
718: maxmin=max-min;
719: maxmax=FMAX(maxmax,maxmin);
720: }
721: if(maxmax < ftolpl){
722: return prlim;
723: }
724: }
725: }
726:
1.12 lievre 727: /*************** transition probabilities ***************/
1.2 lievre 728:
729: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
730: {
731: double s1, s2;
732: /*double t34;*/
733: int i,j,j1, nc, ii, jj;
734:
735: for(i=1; i<= nlstate; i++){
736: for(j=1; j<i;j++){
737: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
738: /*s2 += param[i][j][nc]*cov[nc];*/
739: s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
740: /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
741: }
742: ps[i][j]=s2;
743: /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
744: }
745: for(j=i+1; j<=nlstate+ndeath;j++){
746: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
747: s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
748: /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
749: }
1.22 brouard 750: ps[i][j]=s2;
1.2 lievre 751: }
752: }
1.12 lievre 753: /*ps[3][2]=1;*/
754:
1.2 lievre 755: for(i=1; i<= nlstate; i++){
756: s1=0;
757: for(j=1; j<i; j++)
758: s1+=exp(ps[i][j]);
759: for(j=i+1; j<=nlstate+ndeath; j++)
760: s1+=exp(ps[i][j]);
761: ps[i][i]=1./(s1+1.);
762: for(j=1; j<i; j++)
763: ps[i][j]= exp(ps[i][j])*ps[i][i];
764: for(j=i+1; j<=nlstate+ndeath; j++)
765: ps[i][j]= exp(ps[i][j])*ps[i][i];
766: /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
767: } /* end i */
768:
769: for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
770: for(jj=1; jj<= nlstate+ndeath; jj++){
771: ps[ii][jj]=0;
772: ps[ii][ii]=1;
773: }
774: }
775:
1.12 lievre 776:
1.2 lievre 777: /* for(ii=1; ii<= nlstate+ndeath; ii++){
778: for(jj=1; jj<= nlstate+ndeath; jj++){
779: printf("%lf ",ps[ii][jj]);
780: }
781: printf("\n ");
782: }
783: printf("\n ");printf("%lf ",cov[2]);*/
784: /*
785: for(i=1; i<= npar; i++) printf("%f ",x[i]);
786: goto end;*/
787: return ps;
788: }
789:
790: /**************** Product of 2 matrices ******************/
791:
792: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
793: {
1.13 lievre 794: /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
1.2 lievre 795: b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
796: /* in, b, out are matrice of pointers which should have been initialized
797: before: only the contents of out is modified. The function returns
798: a pointer to pointers identical to out */
799: long i, j, k;
800: for(i=nrl; i<= nrh; i++)
801: for(k=ncolol; k<=ncoloh; k++)
802: for(j=ncl,out[i][k]=0.; j<=nch; j++)
803: out[i][k] +=in[i][j]*b[j][k];
804:
805: return out;
806: }
807:
808:
809: /************* Higher Matrix Product ***************/
810:
811: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
812: {
813: /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month
814: duration (i.e. until
815: age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.
816: Output is stored in matrix po[i][j][h] for h every 'hstepm' step
817: (typically every 2 years instead of every month which is too big).
818: Model is determined by parameters x and covariates have to be
819: included manually here.
820:
821: */
822:
823: int i, j, d, h, k;
824: double **out, cov[NCOVMAX];
825: double **newm;
826:
827: /* Hstepm could be zero and should return the unit matrix */
828: for (i=1;i<=nlstate+ndeath;i++)
829: for (j=1;j<=nlstate+ndeath;j++){
830: oldm[i][j]=(i==j ? 1.0 : 0.0);
831: po[i][j][0]=(i==j ? 1.0 : 0.0);
832: }
833: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
834: for(h=1; h <=nhstepm; h++){
835: for(d=1; d <=hstepm; d++){
836: newm=savm;
837: /* Covariates have to be included here again */
838: cov[1]=1.;
839: cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
1.7 lievre 840: for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.12 lievre 841: for (k=1; k<=cptcovage;k++)
1.7 lievre 842: cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.12 lievre 843: for (k=1; k<=cptcovprod;k++)
1.7 lievre 844: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
845:
846:
1.2 lievre 847: /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
848: /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
849: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
850: pmij(pmmij,cov,ncovmodel,x,nlstate));
851: savm=oldm;
852: oldm=newm;
853: }
854: for(i=1; i<=nlstate+ndeath; i++)
855: for(j=1;j<=nlstate+ndeath;j++) {
856: po[i][j][h]=newm[i][j];
857: /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
858: */
859: }
860: } /* end h */
861: return po;
862: }
863:
864:
865: /*************** log-likelihood *************/
866: double func( double *x)
867: {
1.6 lievre 868: int i, ii, j, k, mi, d, kk;
1.2 lievre 869: double l, ll[NLSTATEMAX], cov[NCOVMAX];
870: double **out;
871: double sw; /* Sum of weights */
872: double lli; /* Individual log likelihood */
1.41.2.2! brouard 873: int s1, s2;
1.2 lievre 874: long ipmx;
875: /*extern weight */
876: /* We are differentiating ll according to initial status */
877: /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
878: /*for(i=1;i<imx;i++)
1.8 lievre 879: printf(" %d\n",s[4][i]);
1.2 lievre 880: */
1.6 lievre 881: cov[1]=1.;
1.2 lievre 882:
883: for(k=1; k<=nlstate; k++) ll[k]=0.;
884: for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.6 lievre 885: for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
1.8 lievre 886: for(mi=1; mi<= wav[i]-1; mi++){
1.2 lievre 887: for (ii=1;ii<=nlstate+ndeath;ii++)
1.41.2.2! brouard 888: for (j=1;j<=nlstate+ndeath;j++){
! 889: oldm[ii][j]=(ii==j ? 1.0 : 0.0);
! 890: savm[ii][j]=(ii==j ? 1.0 : 0.0);
! 891: }
1.8 lievre 892: for(d=0; d<dh[mi][i]; d++){
893: newm=savm;
894: cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
895: for (kk=1; kk<=cptcovage;kk++) {
896: cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
897: }
898:
899: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
900: 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
901: savm=oldm;
902: oldm=newm;
903:
904:
1.2 lievre 905: } /* end mult */
1.8 lievre 906:
1.41.2.2! brouard 907: s1=s[mw[mi][i]][i];
! 908: s2=s[mw[mi+1][i]][i];
! 909: if( s2 > nlstate){
! 910: /* i.e. if s2 is a death state and if the date of death is known then the contribution
! 911: to the likelihood is the probability to die between last step unit time and current
! 912: step unit time, which is also the differences between probability to die before dh
! 913: and probability to die before dh-stepm .
! 914: In version up to 0.92 likelihood was computed
! 915: as if date of death was unknown. Death was treated as any other
! 916: health state: the date of the interview describes the actual state
! 917: and not the date of a change in health state. The former idea was
! 918: to consider that at each interview the state was recorded
! 919: (healthy, disable or death) and IMaCh was corrected; but when we
! 920: introduced the exact date of death then we should have modified
! 921: the contribution of an exact death to the likelihood. This new
! 922: contribution is smaller and very dependent of the step unit
! 923: stepm. It is no more the probability to die between last interview
! 924: and month of death but the probability to survive from last
! 925: interview up to one month before death multiplied by the
! 926: probability to die within a month. Thanks to Chris
! 927: Jackson for correcting this bug. Former versions increased
! 928: mortality artificially. The bad side is that we add another loop
! 929: which slows down the processing. The difference can be up to 10%
! 930: lower mortality.
! 931: */
! 932: lli=log(out[s1][s2] - savm[s1][s2]);
! 933: }else{
! 934: lli=log(out[s1][s2]); /* or lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */
! 935: /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
! 936: }
1.2 lievre 937: ipmx +=1;
938: sw += weight[i];
939: ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.41.2.2! brouard 940: /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/
1.2 lievre 941: } /* end of wave */
942: } /* end of individual */
943:
944: for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
945: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
946: l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.41.2.2! brouard 947: /*exit(0);*/
1.2 lievre 948: return -l;
949: }
950:
951:
952: /*********** Maximum Likelihood Estimation ***************/
953:
954: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
955: {
956: int i,j, iter;
957: double **xi,*delti;
958: double fret;
959: xi=matrix(1,npar,1,npar);
960: for (i=1;i<=npar;i++)
961: for (j=1;j<=npar;j++)
962: xi[i][j]=(i==j ? 1.0 : 0.0);
963: printf("Powell\n");
964: powell(p,xi,npar,ftol,&iter,&fret,func);
965:
966: printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
1.21 lievre 967: fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
1.2 lievre 968:
969: }
970:
971: /**** Computes Hessian and covariance matrix ***/
972: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
973: {
974: double **a,**y,*x,pd;
975: double **hess;
976: int i, j,jk;
977: int *indx;
978:
979: double hessii(double p[], double delta, int theta, double delti[]);
980: double hessij(double p[], double delti[], int i, int j);
981: void lubksb(double **a, int npar, int *indx, double b[]) ;
982: void ludcmp(double **a, int npar, int *indx, double *d) ;
983:
984: hess=matrix(1,npar,1,npar);
985:
986: printf("\nCalculation of the hessian matrix. Wait...\n");
987: for (i=1;i<=npar;i++){
988: printf("%d",i);fflush(stdout);
989: hess[i][i]=hessii(p,ftolhess,i,delti);
990: /*printf(" %f ",p[i]);*/
1.12 lievre 991: /*printf(" %lf ",hess[i][i]);*/
1.2 lievre 992: }
1.12 lievre 993:
1.2 lievre 994: for (i=1;i<=npar;i++) {
995: for (j=1;j<=npar;j++) {
996: if (j>i) {
997: printf(".%d%d",i,j);fflush(stdout);
998: hess[i][j]=hessij(p,delti,i,j);
1.12 lievre 999: hess[j][i]=hess[i][j];
1000: /*printf(" %lf ",hess[i][j]);*/
1.2 lievre 1001: }
1002: }
1003: }
1004: printf("\n");
1005:
1006: printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
1007:
1008: a=matrix(1,npar,1,npar);
1009: y=matrix(1,npar,1,npar);
1010: x=vector(1,npar);
1011: indx=ivector(1,npar);
1012: for (i=1;i<=npar;i++)
1013: for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
1014: ludcmp(a,npar,indx,&pd);
1015:
1016: for (j=1;j<=npar;j++) {
1017: for (i=1;i<=npar;i++) x[i]=0;
1018: x[j]=1;
1019: lubksb(a,npar,indx,x);
1020: for (i=1;i<=npar;i++){
1021: matcov[i][j]=x[i];
1022: }
1023: }
1024:
1025: printf("\n#Hessian matrix#\n");
1026: for (i=1;i<=npar;i++) {
1027: for (j=1;j<=npar;j++) {
1028: printf("%.3e ",hess[i][j]);
1029: }
1030: printf("\n");
1031: }
1032:
1033: /* Recompute Inverse */
1034: for (i=1;i<=npar;i++)
1035: for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
1036: ludcmp(a,npar,indx,&pd);
1037:
1038: /* printf("\n#Hessian matrix recomputed#\n");
1039:
1040: for (j=1;j<=npar;j++) {
1041: for (i=1;i<=npar;i++) x[i]=0;
1042: x[j]=1;
1043: lubksb(a,npar,indx,x);
1044: for (i=1;i<=npar;i++){
1045: y[i][j]=x[i];
1046: printf("%.3e ",y[i][j]);
1047: }
1048: printf("\n");
1049: }
1050: */
1051:
1052: free_matrix(a,1,npar,1,npar);
1053: free_matrix(y,1,npar,1,npar);
1054: free_vector(x,1,npar);
1055: free_ivector(indx,1,npar);
1056: free_matrix(hess,1,npar,1,npar);
1057:
1058:
1059: }
1060:
1061: /*************** hessian matrix ****************/
1062: double hessii( double x[], double delta, int theta, double delti[])
1063: {
1064: int i;
1065: int l=1, lmax=20;
1066: double k1,k2;
1067: double p2[NPARMAX+1];
1068: double res;
1069: double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1070: double fx;
1071: int k=0,kmax=10;
1072: double l1;
1073:
1074: fx=func(x);
1075: for (i=1;i<=npar;i++) p2[i]=x[i];
1076: for(l=0 ; l <=lmax; l++){
1077: l1=pow(10,l);
1078: delts=delt;
1079: for(k=1 ; k <kmax; k=k+1){
1080: delt = delta*(l1*k);
1081: p2[theta]=x[theta] +delt;
1082: k1=func(p2)-fx;
1083: p2[theta]=x[theta]-delt;
1084: k2=func(p2)-fx;
1085: /*res= (k1-2.0*fx+k2)/delt/delt; */
1086: res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
1087:
1088: #ifdef DEBUG
1089: printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
1090: #endif
1091: /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
1092: if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
1093: k=kmax;
1094: }
1095: else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1096: k=kmax; l=lmax*10.;
1097: }
1098: else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
1099: delts=delt;
1100: }
1101: }
1102: }
1103: delti[theta]=delts;
1.12 lievre 1104: return res;
1.3 lievre 1105:
1.2 lievre 1106: }
1107:
1108: double hessij( double x[], double delti[], int thetai,int thetaj)
1109: {
1110: int i;
1111: int l=1, l1, lmax=20;
1112: double k1,k2,k3,k4,res,fx;
1113: double p2[NPARMAX+1];
1114: int k;
1115:
1116: fx=func(x);
1117: for (k=1; k<=2; k++) {
1118: for (i=1;i<=npar;i++) p2[i]=x[i];
1119: p2[thetai]=x[thetai]+delti[thetai]/k;
1120: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1121: k1=func(p2)-fx;
1122:
1123: p2[thetai]=x[thetai]+delti[thetai]/k;
1124: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1125: k2=func(p2)-fx;
1126:
1127: p2[thetai]=x[thetai]-delti[thetai]/k;
1128: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1129: k3=func(p2)-fx;
1130:
1131: p2[thetai]=x[thetai]-delti[thetai]/k;
1132: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1133: k4=func(p2)-fx;
1134: res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
1135: #ifdef DEBUG
1136: printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
1137: #endif
1138: }
1139: return res;
1140: }
1141:
1142: /************** Inverse of matrix **************/
1143: void ludcmp(double **a, int n, int *indx, double *d)
1144: {
1145: int i,imax,j,k;
1146: double big,dum,sum,temp;
1147: double *vv;
1148:
1149: vv=vector(1,n);
1150: *d=1.0;
1151: for (i=1;i<=n;i++) {
1152: big=0.0;
1153: for (j=1;j<=n;j++)
1154: if ((temp=fabs(a[i][j])) > big) big=temp;
1155: if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
1156: vv[i]=1.0/big;
1157: }
1158: for (j=1;j<=n;j++) {
1159: for (i=1;i<j;i++) {
1160: sum=a[i][j];
1161: for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
1162: a[i][j]=sum;
1163: }
1164: big=0.0;
1165: for (i=j;i<=n;i++) {
1166: sum=a[i][j];
1167: for (k=1;k<j;k++)
1168: sum -= a[i][k]*a[k][j];
1169: a[i][j]=sum;
1170: if ( (dum=vv[i]*fabs(sum)) >= big) {
1171: big=dum;
1172: imax=i;
1173: }
1174: }
1175: if (j != imax) {
1176: for (k=1;k<=n;k++) {
1177: dum=a[imax][k];
1178: a[imax][k]=a[j][k];
1179: a[j][k]=dum;
1180: }
1181: *d = -(*d);
1182: vv[imax]=vv[j];
1183: }
1184: indx[j]=imax;
1185: if (a[j][j] == 0.0) a[j][j]=TINY;
1186: if (j != n) {
1187: dum=1.0/(a[j][j]);
1188: for (i=j+1;i<=n;i++) a[i][j] *= dum;
1189: }
1190: }
1191: free_vector(vv,1,n); /* Doesn't work */
1192: ;
1193: }
1194:
1195: void lubksb(double **a, int n, int *indx, double b[])
1196: {
1197: int i,ii=0,ip,j;
1198: double sum;
1199:
1200: for (i=1;i<=n;i++) {
1201: ip=indx[i];
1202: sum=b[ip];
1203: b[ip]=b[i];
1204: if (ii)
1205: for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
1206: else if (sum) ii=i;
1207: b[i]=sum;
1208: }
1209: for (i=n;i>=1;i--) {
1210: sum=b[i];
1211: for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
1212: b[i]=sum/a[i][i];
1213: }
1214: }
1215:
1216: /************ Frequencies ********************/
1.26 lievre 1217: void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
1.2 lievre 1218: { /* Some frequencies */
1.35 lievre 1219:
1.18 lievre 1220: int i, m, jk, k1,i1, j1, bool, z1,z2,j;
1.2 lievre 1221: double ***freq; /* Frequencies */
1222: double *pp;
1.19 lievre 1223: double pos, k2, dateintsum=0,k2cpt=0;
1.2 lievre 1224: FILE *ficresp;
1225: char fileresp[FILENAMELENGTH];
1.35 lievre 1226:
1.2 lievre 1227: pp=vector(1,nlstate);
1.19 lievre 1228: probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.2 lievre 1229: strcpy(fileresp,"p");
1230: strcat(fileresp,fileres);
1231: if((ficresp=fopen(fileresp,"w"))==NULL) {
1232: printf("Problem with prevalence resultfile: %s\n", fileresp);
1233: exit(0);
1234: }
1235: freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
1236: j1=0;
1.35 lievre 1237:
1.7 lievre 1238: j=cptcoveff;
1.2 lievre 1239: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.35 lievre 1240:
1.2 lievre 1241: for(k1=1; k1<=j;k1++){
1.35 lievre 1242: for(i1=1; i1<=ncodemax[k1];i1++){
1243: j1++;
1244: /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
1245: scanf("%d", i);*/
1246: for (i=-1; i<=nlstate+ndeath; i++)
1247: for (jk=-1; jk<=nlstate+ndeath; jk++)
1248: for(m=agemin; m <= agemax+3; m++)
1249: freq[i][jk][m]=0;
1250:
1251: dateintsum=0;
1252: k2cpt=0;
1253: for (i=1; i<=imx; i++) {
1254: bool=1;
1255: if (cptcovn>0) {
1256: for (z1=1; z1<=cptcoveff; z1++)
1257: if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
1258: bool=0;
1259: }
1260: if (bool==1) {
1261: for(m=firstpass; m<=lastpass; m++){
1262: k2=anint[m][i]+(mint[m][i]/12.);
1263: if ((k2>=dateprev1) && (k2<=dateprev2)) {
1264: if(agev[m][i]==0) agev[m][i]=agemax+1;
1265: if(agev[m][i]==1) agev[m][i]=agemax+2;
1266: if (m<lastpass) {
1267: freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1268: freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
1269: }
1270:
1271: if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
1272: dateintsum=dateintsum+k2;
1273: k2cpt++;
1274: }
1275: }
1276: }
1277: }
1278: }
1.26 lievre 1279:
1.35 lievre 1280: fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
1.26 lievre 1281:
1.35 lievre 1282: if (cptcovn>0) {
1283: fprintf(ficresp, "\n#********** Variable ");
1284: for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1285: fprintf(ficresp, "**********\n#");
1286: }
1287: for(i=1; i<=nlstate;i++)
1288: fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
1289: fprintf(ficresp, "\n");
1290:
1291: for(i=(int)agemin; i <= (int)agemax+3; i++){
1292: if(i==(int)agemax+3)
1293: printf("Total");
1294: else
1295: printf("Age %d", i);
1296: for(jk=1; jk <=nlstate ; jk++){
1297: for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
1298: pp[jk] += freq[jk][m][i];
1299: }
1300: for(jk=1; jk <=nlstate ; jk++){
1301: for(m=-1, pos=0; m <=0 ; m++)
1302: pos += freq[jk][m][i];
1303: if(pp[jk]>=1.e-10)
1304: printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
1305: else
1306: printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
1307: }
1.14 lievre 1308:
1.35 lievre 1309: for(jk=1; jk <=nlstate ; jk++){
1310: for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
1311: pp[jk] += freq[jk][m][i];
1312: }
1.14 lievre 1313:
1.35 lievre 1314: for(jk=1,pos=0; jk <=nlstate ; jk++)
1315: pos += pp[jk];
1316: for(jk=1; jk <=nlstate ; jk++){
1317: if(pos>=1.e-5)
1318: printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
1319: else
1320: printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
1321: if( i <= (int) agemax){
1322: if(pos>=1.e-5){
1323: fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
1324: probs[i][jk][j1]= pp[jk]/pos;
1325: /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
1326: }
1327: else
1328: fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
1329: }
1.13 lievre 1330: }
1.35 lievre 1331:
1332: for(jk=-1; jk <=nlstate+ndeath; jk++)
1333: for(m=-1; m <=nlstate+ndeath; m++)
1334: if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
1335: if(i <= (int) agemax)
1336: fprintf(ficresp,"\n");
1337: printf("\n");
1.2 lievre 1338: }
1339: }
1.35 lievre 1340: }
1.19 lievre 1341: dateintmean=dateintsum/k2cpt;
1.2 lievre 1342:
1343: fclose(ficresp);
1344: free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
1345: free_vector(pp,1,nlstate);
1.35 lievre 1346:
1.19 lievre 1347: /* End of Freq */
1348: }
1.2 lievre 1349:
1.15 lievre 1350: /************ Prevalence ********************/
1.28 lievre 1351: void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
1.15 lievre 1352: { /* Some frequencies */
1353:
1354: int i, m, jk, k1, i1, j1, bool, z1,z2,j;
1355: double ***freq; /* Frequencies */
1356: double *pp;
1.18 lievre 1357: double pos, k2;
1.15 lievre 1358:
1359: pp=vector(1,nlstate);
1.19 lievre 1360: probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.15 lievre 1361:
1362: freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
1363: j1=0;
1364:
1365: j=cptcoveff;
1366: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1367:
1368: for(k1=1; k1<=j;k1++){
1369: for(i1=1; i1<=ncodemax[k1];i1++){
1370: j1++;
1371:
1372: for (i=-1; i<=nlstate+ndeath; i++)
1373: for (jk=-1; jk<=nlstate+ndeath; jk++)
1374: for(m=agemin; m <= agemax+3; m++)
1.19 lievre 1375: freq[i][jk][m]=0;
1.28 lievre 1376:
1.15 lievre 1377: for (i=1; i<=imx; i++) {
1378: bool=1;
1379: if (cptcovn>0) {
1380: for (z1=1; z1<=cptcoveff; z1++)
1381: if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
1382: bool=0;
1.28 lievre 1383: }
1.19 lievre 1384: if (bool==1) {
1385: for(m=firstpass; m<=lastpass; m++){
1386: k2=anint[m][i]+(mint[m][i]/12.);
1387: if ((k2>=dateprev1) && (k2<=dateprev2)) {
1.18 lievre 1388: if(agev[m][i]==0) agev[m][i]=agemax+1;
1389: if(agev[m][i]==1) agev[m][i]=agemax+2;
1.41 lievre 1390: if (m<lastpass)
1391: if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
1392: else
1393: freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1394: freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];
1.18 lievre 1395: }
1.15 lievre 1396: }
1397: }
1398: }
1.18 lievre 1399: for(i=(int)agemin; i <= (int)agemax+3; i++){
1400: for(jk=1; jk <=nlstate ; jk++){
1401: for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
1402: pp[jk] += freq[jk][m][i];
1403: }
1404: for(jk=1; jk <=nlstate ; jk++){
1405: for(m=-1, pos=0; m <=0 ; m++)
1.15 lievre 1406: pos += freq[jk][m][i];
1407: }
1408:
1409: for(jk=1; jk <=nlstate ; jk++){
1410: for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
1411: pp[jk] += freq[jk][m][i];
1412: }
1413:
1414: for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
1415:
1416: for(jk=1; jk <=nlstate ; jk++){
1417: if( i <= (int) agemax){
1418: if(pos>=1.e-5){
1419: probs[i][jk][j1]= pp[jk]/pos;
1420: }
1421: }
1422: }
1423:
1.18 lievre 1424: }
1.15 lievre 1425: }
1426: }
1.41 lievre 1427:
1.15 lievre 1428:
1429: free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
1430: free_vector(pp,1,nlstate);
1431:
1432: } /* End of Freq */
1.19 lievre 1433:
1.2 lievre 1434: /************* Waves Concatenation ***************/
1435:
1436: void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm)
1437: {
1438: /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
1439: Death is a valid wave (if date is known).
1440: mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
1441: dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
1442: and mw[mi+1][i]. dh depends on stepm.
1443: */
1444:
1445: int i, mi, m;
1.8 lievre 1446: /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
1447: double sum=0., jmean=0.;*/
1.2 lievre 1448:
1.11 lievre 1449: int j, k=0,jk, ju, jl;
1450: double sum=0.;
1451: jmin=1e+5;
1452: jmax=-1;
1453: jmean=0.;
1.2 lievre 1454: for(i=1; i<=imx; i++){
1455: mi=0;
1456: m=firstpass;
1457: while(s[m][i] <= nlstate){
1458: if(s[m][i]>=1)
1459: mw[++mi][i]=m;
1460: if(m >=lastpass)
1461: break;
1462: else
1463: m++;
1464: }/* end while */
1465: if (s[m][i] > nlstate){
1466: mi++; /* Death is another wave */
1467: /* if(mi==0) never been interviewed correctly before death */
1468: /* Only death is a correct wave */
1469: mw[mi][i]=m;
1470: }
1471:
1472: wav[i]=mi;
1473: if(mi==0)
1474: printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
1475: }
1476:
1477: for(i=1; i<=imx; i++){
1478: for(mi=1; mi<wav[i];mi++){
1479: if (stepm <=0)
1480: dh[mi][i]=1;
1481: else{
1482: if (s[mw[mi+1][i]][i] > nlstate) {
1.10 lievre 1483: if (agedc[i] < 2*AGESUP) {
1.2 lievre 1484: j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
1.8 lievre 1485: if(j==0) j=1; /* Survives at least one month after exam */
1486: k=k+1;
1487: if (j >= jmax) jmax=j;
1.11 lievre 1488: if (j <= jmin) jmin=j;
1.8 lievre 1489: sum=sum+j;
1.30 lievre 1490: /*if (j<0) printf("j=%d num=%d \n",j,i); */
1.10 lievre 1491: }
1.2 lievre 1492: }
1493: else{
1494: j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1495: k=k+1;
1496: if (j >= jmax) jmax=j;
1497: else if (j <= jmin)jmin=j;
1.30 lievre 1498: /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
1.2 lievre 1499: sum=sum+j;
1500: }
1501: jk= j/stepm;
1502: jl= j -jk*stepm;
1503: ju= j -(jk+1)*stepm;
1504: if(jl <= -ju)
1505: dh[mi][i]=jk;
1506: else
1507: dh[mi][i]=jk+1;
1508: if(dh[mi][i]==0)
1509: dh[mi][i]=1; /* At least one step */
1510: }
1511: }
1512: }
1.8 lievre 1513: jmean=sum/k;
1514: printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
1.12 lievre 1515: }
1.2 lievre 1516: /*********** Tricode ****************************/
1517: void tricode(int *Tvar, int **nbcode, int imx)
1518: {
1.7 lievre 1519: int Ndum[20],ij=1, k, j, i;
1.2 lievre 1520: int cptcode=0;
1.7 lievre 1521: cptcoveff=0;
1522:
1523: for (k=0; k<19; k++) Ndum[k]=0;
1.2 lievre 1524: for (k=1; k<=7; k++) ncodemax[k]=0;
1.6 lievre 1525:
1.7 lievre 1526: for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.2 lievre 1527: for (i=1; i<=imx; i++) {
1528: ij=(int)(covar[Tvar[j]][i]);
1529: Ndum[ij]++;
1.8 lievre 1530: /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.2 lievre 1531: if (ij > cptcode) cptcode=ij;
1532: }
1.7 lievre 1533:
1.2 lievre 1534: for (i=0; i<=cptcode; i++) {
1535: if(Ndum[i]!=0) ncodemax[j]++;
1536: }
1537: ij=1;
1.7 lievre 1538:
1.8 lievre 1539:
1.2 lievre 1540: for (i=1; i<=ncodemax[j]; i++) {
1.7 lievre 1541: for (k=0; k<=19; k++) {
1.2 lievre 1542: if (Ndum[k] != 0) {
1543: nbcode[Tvar[j]][ij]=k;
1.39 lievre 1544:
1.2 lievre 1545: ij++;
1546: }
1547: if (ij > ncodemax[j]) break;
1548: }
1549: }
1.7 lievre 1550: }
1.8 lievre 1551:
1552: for (k=0; k<19; k++) Ndum[k]=0;
1553:
1.12 lievre 1554: for (i=1; i<=ncovmodel-2; i++) {
1.7 lievre 1555: ij=Tvar[i];
1556: Ndum[ij]++;
1557: }
1.8 lievre 1558:
1.7 lievre 1559: ij=1;
1.8 lievre 1560: for (i=1; i<=10; i++) {
1.34 brouard 1561: if((Ndum[i]!=0) && (i<=ncovcol)){
1.8 lievre 1562: Tvaraff[ij]=i;
1563: ij++;
1.7 lievre 1564: }
1565: }
1566:
1.8 lievre 1567: cptcoveff=ij-1;
1.6 lievre 1568: }
1.2 lievre 1569:
1570: /*********** Health Expectancies ****************/
1571:
1.41 lievre 1572: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
1573:
1.2 lievre 1574: {
1575: /* Health expectancies */
1.41 lievre 1576: int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
1.35 lievre 1577: double age, agelim, hf;
1.41 lievre 1578: double ***p3mat,***varhe;
1579: double **dnewm,**doldm;
1580: double *xp;
1581: double **gp, **gm;
1582: double ***gradg, ***trgradg;
1583: int theta;
1584:
1585: varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
1586: xp=vector(1,npar);
1587: dnewm=matrix(1,nlstate*2,1,npar);
1588: doldm=matrix(1,nlstate*2,1,nlstate*2);
1.2 lievre 1589:
1590: fprintf(ficreseij,"# Health expectancies\n");
1591: fprintf(ficreseij,"# Age");
1592: for(i=1; i<=nlstate;i++)
1593: for(j=1; j<=nlstate;j++)
1.41 lievre 1594: fprintf(ficreseij," %1d-%1d (SE)",i,j);
1.2 lievre 1595: fprintf(ficreseij,"\n");
1596:
1.36 brouard 1597: if(estepm < stepm){
1598: printf ("Problem %d lower than %d\n",estepm, stepm);
1599: }
1600: else hstepm=estepm;
1601: /* We compute the life expectancy from trapezoids spaced every estepm months
1602: * This is mainly to measure the difference between two models: for example
1603: * if stepm=24 months pijx are given only every 2 years and by summing them
1604: * we are calculating an estimate of the Life Expectancy assuming a linear
1605: * progression inbetween and thus overestimating or underestimating according
1606: * to the curvature of the survival function. If, for the same date, we
1607: * estimate the model with stepm=1 month, we can keep estepm to 24 months
1608: * to compare the new estimate of Life expectancy with the same linear
1609: * hypothesis. A more precise result, taking into account a more precise
1610: * curvature will be obtained if estepm is as small as stepm. */
1611:
1612: /* For example we decided to compute the life expectancy with the smallest unit */
1.31 brouard 1613: /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
1614: nhstepm is the number of hstepm from age to agelim
1615: nstepm is the number of stepm from age to agelin.
1616: Look at hpijx to understand the reason of that which relies in memory size
1.36 brouard 1617: and note for a fixed period like estepm months */
1.31 brouard 1618: /* We decided (b) to get a life expectancy respecting the most precise curvature of the
1.32 brouard 1619: survival function given by stepm (the optimization length). Unfortunately it
1.31 brouard 1620: means that if the survival funtion is printed only each two years of age and if
1621: you sum them up and add 1 year (area under the trapezoids) you won't get the same
1622: results. So we changed our mind and took the option of the best precision.
1623: */
1.36 brouard 1624: hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
1.2 lievre 1625:
1626: agelim=AGESUP;
1627: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1628: /* nhstepm age range expressed in number of stepm */
1.31 brouard 1629: nstepm=(int) rint((agelim-age)*YEARM/stepm);
1630: /* Typically if 20 years nstepm = 20*12/6=40 stepm */
1.33 brouard 1631: /* if (stepm >= YEARM) hstepm=1;*/
1.31 brouard 1632: nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
1.2 lievre 1633: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.41 lievre 1634: gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
1635: gp=matrix(0,nhstepm,1,nlstate*2);
1636: gm=matrix(0,nhstepm,1,nlstate*2);
1637:
1.2 lievre 1638: /* Computed by stepm unit matrices, product of hstepm matrices, stored
1639: in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
1640: hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
1.41 lievre 1641:
1642:
1643: hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
1644:
1645: /* Computing Variances of health expectancies */
1646:
1647: for(theta=1; theta <=npar; theta++){
1648: for(i=1; i<=npar; i++){
1649: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1650: }
1651: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1.39 lievre 1652:
1.41 lievre 1653: cptj=0;
1654: for(j=1; j<= nlstate; j++){
1655: for(i=1; i<=nlstate; i++){
1656: cptj=cptj+1;
1657: for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
1658: gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
1659: }
1660: }
1661: }
1662:
1663:
1664: for(i=1; i<=npar; i++)
1665: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1666: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1667:
1668: cptj=0;
1669: for(j=1; j<= nlstate; j++){
1670: for(i=1;i<=nlstate;i++){
1671: cptj=cptj+1;
1672: for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
1673: gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
1674: }
1675: }
1676: }
1677:
1678:
1679:
1680: for(j=1; j<= nlstate*2; j++)
1681: for(h=0; h<=nhstepm-1; h++){
1682: gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
1683: }
1.39 lievre 1684:
1.41 lievre 1685: }
1686:
1687: /* End theta */
1688:
1689: trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
1690:
1691: for(h=0; h<=nhstepm-1; h++)
1692: for(j=1; j<=nlstate*2;j++)
1693: for(theta=1; theta <=npar; theta++)
1694: trgradg[h][j][theta]=gradg[h][theta][j];
1695:
1696:
1697: for(i=1;i<=nlstate*2;i++)
1698: for(j=1;j<=nlstate*2;j++)
1699: varhe[i][j][(int)age] =0.;
1700:
1701: for(h=0;h<=nhstepm-1;h++){
1702: for(k=0;k<=nhstepm-1;k++){
1703: matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
1704: matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
1705: for(i=1;i<=nlstate*2;i++)
1706: for(j=1;j<=nlstate*2;j++)
1707: varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
1708: }
1709: }
1710:
1711:
1712: /* Computing expectancies */
1.2 lievre 1713: for(i=1; i<=nlstate;i++)
1714: for(j=1; j<=nlstate;j++)
1.29 lievre 1715: for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
1.31 brouard 1716: eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
1.41 lievre 1717:
1718: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
1719:
1.2 lievre 1720: }
1.41 lievre 1721:
1.29 lievre 1722: fprintf(ficreseij,"%3.0f",age );
1.41 lievre 1723: cptj=0;
1.29 lievre 1724: for(i=1; i<=nlstate;i++)
1725: for(j=1; j<=nlstate;j++){
1.41 lievre 1726: cptj++;
1727: fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
1.2 lievre 1728: }
1729: fprintf(ficreseij,"\n");
1.41 lievre 1730:
1731: free_matrix(gm,0,nhstepm,1,nlstate*2);
1732: free_matrix(gp,0,nhstepm,1,nlstate*2);
1733: free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
1734: free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
1.2 lievre 1735: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1736: }
1.41 lievre 1737: free_vector(xp,1,npar);
1738: free_matrix(dnewm,1,nlstate*2,1,npar);
1739: free_matrix(doldm,1,nlstate*2,1,nlstate*2);
1740: free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
1.2 lievre 1741: }
1742:
1743: /************ Variance ******************/
1.36 brouard 1744: void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)
1.2 lievre 1745: {
1746: /* Variance of health expectancies */
1747: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1748: double **newm;
1749: double **dnewm,**doldm;
1.36 brouard 1750: int i, j, nhstepm, hstepm, h, nstepm ;
1.2 lievre 1751: int k, cptcode;
1.12 lievre 1752: double *xp;
1.2 lievre 1753: double **gp, **gm;
1754: double ***gradg, ***trgradg;
1755: double ***p3mat;
1.35 lievre 1756: double age,agelim, hf;
1.2 lievre 1757: int theta;
1758:
1759: fprintf(ficresvij,"# Covariances of life expectancies\n");
1760: fprintf(ficresvij,"# Age");
1761: for(i=1; i<=nlstate;i++)
1762: for(j=1; j<=nlstate;j++)
1763: fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
1764: fprintf(ficresvij,"\n");
1765:
1766: xp=vector(1,npar);
1767: dnewm=matrix(1,nlstate,1,npar);
1768: doldm=matrix(1,nlstate,1,nlstate);
1769:
1.36 brouard 1770: if(estepm < stepm){
1771: printf ("Problem %d lower than %d\n",estepm, stepm);
1772: }
1773: else hstepm=estepm;
1774: /* For example we decided to compute the life expectancy with the smallest unit */
1.35 lievre 1775: /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
1776: nhstepm is the number of hstepm from age to agelim
1777: nstepm is the number of stepm from age to agelin.
1778: Look at hpijx to understand the reason of that which relies in memory size
1779: and note for a fixed period like k years */
1780: /* We decided (b) to get a life expectancy respecting the most precise curvature of the
1781: survival function given by stepm (the optimization length). Unfortunately it
1782: means that if the survival funtion is printed only each two years of age and if
1783: you sum them up and add 1 year (area under the trapezoids) you won't get the same
1784: results. So we changed our mind and took the option of the best precision.
1785: */
1.36 brouard 1786: hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
1.2 lievre 1787: agelim = AGESUP;
1788: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1.35 lievre 1789: nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1790: nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
1.2 lievre 1791: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1792: gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
1793: gp=matrix(0,nhstepm,1,nlstate);
1794: gm=matrix(0,nhstepm,1,nlstate);
1795:
1796: for(theta=1; theta <=npar; theta++){
1797: for(i=1; i<=npar; i++){ /* Computes gradient */
1798: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1799: }
1800: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1801: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1.14 lievre 1802:
1803: if (popbased==1) {
1804: for(i=1; i<=nlstate;i++)
1805: prlim[i][i]=probs[(int)age][i][ij];
1806: }
1.26 lievre 1807:
1.2 lievre 1808: for(j=1; j<= nlstate; j++){
1809: for(h=0; h<=nhstepm; h++){
1810: for(i=1, gp[h][j]=0.;i<=nlstate;i++)
1811: gp[h][j] += prlim[i][i]*p3mat[i][j][h];
1812: }
1813: }
1814:
1815: for(i=1; i<=npar; i++) /* Computes gradient */
1816: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1817: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1818: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1.26 lievre 1819:
1.14 lievre 1820: if (popbased==1) {
1821: for(i=1; i<=nlstate;i++)
1822: prlim[i][i]=probs[(int)age][i][ij];
1823: }
1824:
1.2 lievre 1825: for(j=1; j<= nlstate; j++){
1826: for(h=0; h<=nhstepm; h++){
1827: for(i=1, gm[h][j]=0.;i<=nlstate;i++)
1828: gm[h][j] += prlim[i][i]*p3mat[i][j][h];
1829: }
1830: }
1.14 lievre 1831:
1.2 lievre 1832: for(j=1; j<= nlstate; j++)
1833: for(h=0; h<=nhstepm; h++){
1834: gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
1835: }
1836: } /* End theta */
1837:
1838: trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
1839:
1840: for(h=0; h<=nhstepm; h++)
1841: for(j=1; j<=nlstate;j++)
1842: for(theta=1; theta <=npar; theta++)
1843: trgradg[h][j][theta]=gradg[h][theta][j];
1844:
1.35 lievre 1845: hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
1.2 lievre 1846: for(i=1;i<=nlstate;i++)
1847: for(j=1;j<=nlstate;j++)
1848: vareij[i][j][(int)age] =0.;
1.35 lievre 1849:
1.2 lievre 1850: for(h=0;h<=nhstepm;h++){
1851: for(k=0;k<=nhstepm;k++){
1852: matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
1853: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
1854: for(i=1;i<=nlstate;i++)
1855: for(j=1;j<=nlstate;j++)
1.35 lievre 1856: vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
1.2 lievre 1857: }
1858: }
1.35 lievre 1859:
1.2 lievre 1860: fprintf(ficresvij,"%.0f ",age );
1861: for(i=1; i<=nlstate;i++)
1862: for(j=1; j<=nlstate;j++){
1.35 lievre 1863: fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
1.2 lievre 1864: }
1865: fprintf(ficresvij,"\n");
1866: free_matrix(gp,0,nhstepm,1,nlstate);
1867: free_matrix(gm,0,nhstepm,1,nlstate);
1868: free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
1869: free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
1870: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1871: } /* End age */
1.26 lievre 1872:
1.2 lievre 1873: free_vector(xp,1,npar);
1874: free_matrix(doldm,1,nlstate,1,npar);
1875: free_matrix(dnewm,1,nlstate,1,nlstate);
1876:
1877: }
1878:
1879: /************ Variance of prevlim ******************/
1880: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
1881: {
1882: /* Variance of prevalence limit */
1883: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1884: double **newm;
1885: double **dnewm,**doldm;
1886: int i, j, nhstepm, hstepm;
1887: int k, cptcode;
1888: double *xp;
1889: double *gp, *gm;
1890: double **gradg, **trgradg;
1891: double age,agelim;
1892: int theta;
1893:
1894: fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
1895: fprintf(ficresvpl,"# Age");
1896: for(i=1; i<=nlstate;i++)
1897: fprintf(ficresvpl," %1d-%1d",i,i);
1898: fprintf(ficresvpl,"\n");
1899:
1900: xp=vector(1,npar);
1901: dnewm=matrix(1,nlstate,1,npar);
1902: doldm=matrix(1,nlstate,1,nlstate);
1903:
1904: hstepm=1*YEARM; /* Every year of age */
1905: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1906: agelim = AGESUP;
1907: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1908: nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1909: if (stepm >= YEARM) hstepm=1;
1910: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1911: gradg=matrix(1,npar,1,nlstate);
1912: gp=vector(1,nlstate);
1913: gm=vector(1,nlstate);
1914:
1915: for(theta=1; theta <=npar; theta++){
1916: for(i=1; i<=npar; i++){ /* Computes gradient */
1917: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1918: }
1919: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1920: for(i=1;i<=nlstate;i++)
1921: gp[i] = prlim[i][i];
1922:
1923: for(i=1; i<=npar; i++) /* Computes gradient */
1924: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1925: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1926: for(i=1;i<=nlstate;i++)
1927: gm[i] = prlim[i][i];
1928:
1929: for(i=1;i<=nlstate;i++)
1930: gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1931: } /* End theta */
1932:
1933: trgradg =matrix(1,nlstate,1,npar);
1934:
1935: for(j=1; j<=nlstate;j++)
1936: for(theta=1; theta <=npar; theta++)
1937: trgradg[j][theta]=gradg[theta][j];
1938:
1939: for(i=1;i<=nlstate;i++)
1940: varpl[i][(int)age] =0.;
1941: matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
1942: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
1943: for(i=1;i<=nlstate;i++)
1944: varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
1945:
1946: fprintf(ficresvpl,"%.0f ",age );
1947: for(i=1; i<=nlstate;i++)
1948: fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1949: fprintf(ficresvpl,"\n");
1950: free_vector(gp,1,nlstate);
1951: free_vector(gm,1,nlstate);
1952: free_matrix(gradg,1,npar,1,nlstate);
1953: free_matrix(trgradg,1,nlstate,1,npar);
1954: } /* End age */
1955:
1956: free_vector(xp,1,npar);
1957: free_matrix(doldm,1,nlstate,1,npar);
1958: free_matrix(dnewm,1,nlstate,1,nlstate);
1959:
1960: }
1961:
1.13 lievre 1962: /************ Variance of one-step probabilities ******************/
1.39 lievre 1963: void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
1.13 lievre 1964: {
1.39 lievre 1965: int i, j, i1, k1, j1, z1;
1.13 lievre 1966: int k=0, cptcode;
1967: double **dnewm,**doldm;
1968: double *xp;
1969: double *gp, *gm;
1970: double **gradg, **trgradg;
1971: double age,agelim, cov[NCOVMAX];
1972: int theta;
1973: char fileresprob[FILENAMELENGTH];
1974:
1975: strcpy(fileresprob,"prob");
1976: strcat(fileresprob,fileres);
1977: if((ficresprob=fopen(fileresprob,"w"))==NULL) {
1978: printf("Problem with resultfile: %s\n", fileresprob);
1979: }
1.41 lievre 1980: printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
1.13 lievre 1981:
1.41 lievre 1982: fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");
1983: fprintf(ficresprob,"# Age");
1984: for(i=1; i<=nlstate;i++)
1985: for(j=1; j<=(nlstate+ndeath);j++)
1986: fprintf(ficresprob," p%1d-%1d (SE)",i,j);
1987:
1988:
1989: fprintf(ficresprob,"\n");
1990:
1.2 lievre 1991:
1.13 lievre 1992: xp=vector(1,npar);
1993: dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
1994: doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));
1995:
1996: cov[1]=1;
1.39 lievre 1997: j=cptcoveff;
1998: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1999: j1=0;
2000: for(k1=1; k1<=1;k1++){
2001: for(i1=1; i1<=ncodemax[k1];i1++){
2002: j1++;
2003:
2004: if (cptcovn>0) {
2005: fprintf(ficresprob, "\n#********** Variable ");
2006: for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
2007: fprintf(ficresprob, "**********\n#");
2008: }
1.13 lievre 2009:
1.39 lievre 2010: for (age=bage; age<=fage; age ++){
2011: cov[2]=age;
2012: for (k=1; k<=cptcovn;k++) {
2013: cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
2014:
1.13 lievre 2015: }
1.39 lievre 2016: for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
2017: for (k=1; k<=cptcovprod;k++)
2018: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
2019:
2020: gradg=matrix(1,npar,1,9);
2021: trgradg=matrix(1,9,1,npar);
2022: gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
2023: gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
2024:
2025: for(theta=1; theta <=npar; theta++){
2026: for(i=1; i<=npar; i++)
2027: xp[i] = x[i] + (i==theta ?delti[theta]:0);
2028:
2029: pmij(pmmij,cov,ncovmodel,xp,nlstate);
2030:
2031: k=0;
2032: for(i=1; i<= (nlstate+ndeath); i++){
2033: for(j=1; j<=(nlstate+ndeath);j++){
2034: k=k+1;
2035: gp[k]=pmmij[i][j];
2036: }
2037: }
2038:
2039: for(i=1; i<=npar; i++)
2040: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.13 lievre 2041:
1.39 lievre 2042: pmij(pmmij,cov,ncovmodel,xp,nlstate);
2043: k=0;
2044: for(i=1; i<=(nlstate+ndeath); i++){
2045: for(j=1; j<=(nlstate+ndeath);j++){
2046: k=k+1;
2047: gm[k]=pmmij[i][j];
2048: }
2049: }
2050:
2051: for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)
2052: gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
1.13 lievre 2053: }
2054:
1.39 lievre 2055: for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)
2056: for(theta=1; theta <=npar; theta++)
2057: trgradg[j][theta]=gradg[theta][j];
2058:
2059: matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);
2060: matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);
2061:
2062: pmij(pmmij,cov,ncovmodel,x,nlstate);
2063:
2064: k=0;
2065: for(i=1; i<=(nlstate+ndeath); i++){
2066: for(j=1; j<=(nlstate+ndeath);j++){
2067: k=k+1;
2068: gm[k]=pmmij[i][j];
2069: }
1.13 lievre 2070: }
2071:
2072: /*printf("\n%d ",(int)age);
2073: for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
2074: printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
2075: }*/
2076:
1.39 lievre 2077: fprintf(ficresprob,"\n%d ",(int)age);
1.13 lievre 2078:
1.39 lievre 2079: for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)
1.41 lievre 2080: fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));
1.39 lievre 2081:
2082: }
2083: }
1.13 lievre 2084: free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
2085: free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
2086: free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
2087: free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
1.39 lievre 2088: }
2089: free_vector(xp,1,npar);
2090: fclose(ficresprob);
2091:
1.13 lievre 2092: }
1.2 lievre 2093:
1.25 lievre 2094: /******************* Printing html file ***********/
1.35 lievre 2095: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
2096: int lastpass, int stepm, int weightopt, char model[],\
2097: int imx,int jmin, int jmax, double jmeanint,char optionfile[], \
2098: char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\
1.36 brouard 2099: char version[], int popforecast, int estepm ){
1.25 lievre 2100: int jj1, k1, i1, cpt;
2101: FILE *fichtm;
2102: /*char optionfilehtm[FILENAMELENGTH];*/
2103:
2104: strcpy(optionfilehtm,optionfile);
2105: strcat(optionfilehtm,".htm");
2106: if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
2107: printf("Problem with %s \n",optionfilehtm), exit(0);
2108: }
2109:
1.37 brouard 2110: fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
1.35 lievre 2111: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
2112: \n
2113: Total number of observations=%d <br>\n
2114: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
1.25 lievre 2115: <hr size=\"2\" color=\"#EC5E5E\">
1.35 lievre 2116: <ul><li>Outputs files<br>\n
2117: - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
2118: - Gnuplot file name: <a href=\"%s\">%s</a><br>\n
2119: - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
2120: - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n
2121: - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n
1.38 lievre 2122: - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
1.35 lievre 2123:
2124: fprintf(fichtm,"\n
2125: - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n
1.41 lievre 2126: - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
2127: - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n
1.35 lievre 2128: - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n
1.41 lievre 2129: - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
1.35 lievre 2130:
2131: if(popforecast==1) fprintf(fichtm,"\n
2132: - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
2133: - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
2134: <br>",fileres,fileres,fileres,fileres);
2135: else
2136: fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
1.25 lievre 2137: fprintf(fichtm," <li>Graphs</li><p>");
2138:
2139: m=cptcoveff;
2140: if (cptcovn < 1) {m=1;ncodemax[1]=1;}
2141:
2142: jj1=0;
2143: for(k1=1; k1<=m;k1++){
2144: for(i1=1; i1<=ncodemax[k1];i1++){
2145: jj1++;
2146: if (cptcovn > 0) {
2147: fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
2148: for (cpt=1; cpt<=cptcoveff;cpt++)
2149: fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
2150: fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
2151: }
2152: fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
2153: <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
2154: for(cpt=1; cpt<nlstate;cpt++){
2155: fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
2156: <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
2157: }
2158: for(cpt=1; cpt<=nlstate;cpt++) {
2159: fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
2160: interval) in state (%d): v%s%d%d.gif <br>
2161: <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
2162: }
2163: for(cpt=1; cpt<=nlstate;cpt++) {
2164: fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
2165: <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
2166: }
2167: fprintf(fichtm,"\n<br>- Total life expectancy by age and
2168: health expectancies in states (1) and (2): e%s%d.gif<br>
2169: <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
2170: fprintf(fichtm,"\n</body>");
2171: }
2172: }
2173: fclose(fichtm);
2174: }
2175:
2176: /******************* Gnuplot file **************/
1.35 lievre 2177: void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.25 lievre 2178:
2179: int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
2180:
2181: strcpy(optionfilegnuplot,optionfilefiname);
1.35 lievre 2182: strcat(optionfilegnuplot,".gp.txt");
1.25 lievre 2183: if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
2184: printf("Problem with file %s",optionfilegnuplot);
2185: }
2186:
2187: #ifdef windows
2188: fprintf(ficgp,"cd \"%s\" \n",pathc);
2189: #endif
2190: m=pow(2,cptcoveff);
2191:
2192: /* 1eme*/
2193: for (cpt=1; cpt<= nlstate ; cpt ++) {
2194: for (k1=1; k1<= m ; k1 ++) {
2195:
1.41.2.1 brouard 2196: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
1.25 lievre 2197:
2198: for (i=1; i<= nlstate ; i ++) {
2199: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2200: else fprintf(ficgp," \%%*lf (\%%*lf)");
2201: }
2202: fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
2203: for (i=1; i<= nlstate ; i ++) {
2204: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2205: else fprintf(ficgp," \%%*lf (\%%*lf)");
2206: }
2207: fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
2208: for (i=1; i<= nlstate ; i ++) {
2209: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2210: else fprintf(ficgp," \%%*lf (\%%*lf)");
2211: }
2212: fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
1.41.2.1 brouard 2213:
1.25 lievre 2214: fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2215: }
2216: }
2217: /*2 eme*/
2218:
2219: for (k1=1; k1<= m ; k1 ++) {
1.35 lievre 2220: fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);
1.25 lievre 2221:
2222: for (i=1; i<= nlstate+1 ; i ++) {
2223: k=2*i;
2224: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
2225: for (j=1; j<= nlstate+1 ; j ++) {
2226: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2227: else fprintf(ficgp," \%%*lf (\%%*lf)");
2228: }
2229: if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
2230: else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
2231: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
2232: for (j=1; j<= nlstate+1 ; j ++) {
2233: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2234: else fprintf(ficgp," \%%*lf (\%%*lf)");
2235: }
2236: fprintf(ficgp,"\" t\"\" w l 0,");
2237: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
2238: for (j=1; j<= nlstate+1 ; j ++) {
2239: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2240: else fprintf(ficgp," \%%*lf (\%%*lf)");
2241: }
2242: if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
2243: else fprintf(ficgp,"\" t\"\" w l 0,");
2244: }
2245: fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
2246: }
2247:
2248: /*3eme*/
2249:
2250: for (k1=1; k1<= m ; k1 ++) {
2251: for (cpt=1; cpt<= nlstate ; cpt ++) {
1.41 lievre 2252: k=2+nlstate*(2*cpt-2);
1.35 lievre 2253: fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
1.41 lievre 2254: /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
2255: for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
2256: fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
2257: fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
2258: for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
2259: fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
2260:
2261: */
1.25 lievre 2262: for (i=1; i< nlstate ; i ++) {
1.41 lievre 2263: fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
2264:
1.25 lievre 2265: }
2266: fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2267: }
2268: }
2269:
2270: /* CV preval stat */
2271: for (k1=1; k1<= m ; k1 ++) {
2272: for (cpt=1; cpt<nlstate ; cpt ++) {
2273: k=3;
1.35 lievre 2274: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
1.25 lievre 2275:
2276: for (i=1; i< nlstate ; i ++)
2277: fprintf(ficgp,"+$%d",k+i+1);
2278: fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
2279:
2280: l=3+(nlstate+ndeath)*cpt;
2281: fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
2282: for (i=1; i< nlstate ; i ++) {
2283: l=3+(nlstate+ndeath)*cpt;
2284: fprintf(ficgp,"+$%d",l+i+1);
2285: }
2286: fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);
2287: fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2288: }
2289: }
2290:
2291: /* proba elementaires */
2292: for(i=1,jk=1; i <=nlstate; i++){
2293: for(k=1; k <=(nlstate+ndeath); k++){
2294: if (k != i) {
2295: for(j=1; j <=ncovmodel; j++){
2296:
2297: fprintf(ficgp,"p%d=%f ",jk,p[jk]);
2298: jk++;
2299: fprintf(ficgp,"\n");
2300: }
2301: }
2302: }
2303: }
2304:
2305: for(jk=1; jk <=m; jk++) {
1.35 lievre 2306: fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot [%.f:%.f] ",ageminpar,agemaxpar);
1.25 lievre 2307: i=1;
2308: for(k2=1; k2<=nlstate; k2++) {
2309: k3=i;
2310: for(k=1; k<=(nlstate+ndeath); k++) {
2311: if (k != k2){
2312: fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
2313: ij=1;
2314: for(j=3; j <=ncovmodel; j++) {
2315: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
2316: fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
2317: ij++;
2318: }
2319: else
2320: fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
2321: }
2322: fprintf(ficgp,")/(1");
2323:
2324: for(k1=1; k1 <=nlstate; k1++){
2325: fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
2326: ij=1;
2327: for(j=3; j <=ncovmodel; j++){
2328: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
2329: fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
2330: ij++;
2331: }
2332: else
2333: fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
2334: }
2335: fprintf(ficgp,")");
2336: }
2337: fprintf(ficgp,") t \"p%d%d\" ", k2,k);
2338: if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
2339: i=i+ncovmodel;
2340: }
2341: }
2342: }
2343: fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);
2344: }
2345:
2346: fclose(ficgp);
2347: } /* end gnuplot */
2348:
2349:
2350: /*************** Moving average **************/
1.35 lievre 2351: void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){
1.25 lievre 2352:
2353: int i, cpt, cptcod;
1.35 lievre 2354: for (agedeb=ageminpar; agedeb<=fage; agedeb++)
1.25 lievre 2355: for (i=1; i<=nlstate;i++)
2356: for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
2357: mobaverage[(int)agedeb][i][cptcod]=0.;
2358:
1.35 lievre 2359: for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){
1.25 lievre 2360: for (i=1; i<=nlstate;i++){
2361: for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
2362: for (cpt=0;cpt<=4;cpt++){
2363: mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];
2364: }
2365: mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;
2366: }
2367: }
2368: }
2369:
2370: }
2371:
1.27 lievre 2372:
2373: /************** Forecasting ******************/
1.35 lievre 2374: prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
1.27 lievre 2375:
2376: int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
2377: int *popage;
2378: double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
2379: double *popeffectif,*popcount;
2380: double ***p3mat;
2381: char fileresf[FILENAMELENGTH];
2382:
2383: agelim=AGESUP;
2384: calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
1.28 lievre 2385:
1.35 lievre 2386: prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
1.28 lievre 2387:
1.27 lievre 2388:
2389: strcpy(fileresf,"f");
2390: strcat(fileresf,fileres);
2391: if((ficresf=fopen(fileresf,"w"))==NULL) {
2392: printf("Problem with forecast resultfile: %s\n", fileresf);
2393: }
2394: printf("Computing forecasting: result on file '%s' \n", fileresf);
2395:
2396: if (cptcoveff==0) ncodemax[cptcoveff]=1;
2397:
2398: if (mobilav==1) {
2399: mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.35 lievre 2400: movingaverage(agedeb, fage, ageminpar, mobaverage);
1.27 lievre 2401: }
2402:
2403: stepsize=(int) (stepm+YEARM-1)/YEARM;
2404: if (stepm<=12) stepsize=1;
2405:
2406: agelim=AGESUP;
2407:
2408: hstepm=1;
2409: hstepm=hstepm/stepm;
2410: yp1=modf(dateintmean,&yp);
2411: anprojmean=yp;
2412: yp2=modf((yp1*12),&yp);
2413: mprojmean=yp;
2414: yp1=modf((yp2*30.5),&yp);
2415: jprojmean=yp;
2416: if(jprojmean==0) jprojmean=1;
2417: if(mprojmean==0) jprojmean=1;
2418:
2419: fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);
2420:
2421: for(cptcov=1;cptcov<=i2;cptcov++){
2422: for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
2423: k=k+1;
2424: fprintf(ficresf,"\n#******");
2425: for(j=1;j<=cptcoveff;j++) {
2426: fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
2427: }
2428: fprintf(ficresf,"******\n");
2429: fprintf(ficresf,"# StartingAge FinalAge");
2430: for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
2431:
2432:
2433: for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {
2434: fprintf(ficresf,"\n");
2435: fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);
1.28 lievre 2436:
1.35 lievre 2437: for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
1.27 lievre 2438: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
2439: nhstepm = nhstepm/hstepm;
2440:
2441: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2442: oldm=oldms;savm=savms;
2443: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
2444:
2445: for (h=0; h<=nhstepm; h++){
2446: if (h==(int) (calagedate+YEARM*cpt)) {
1.35 lievre 2447: fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
1.27 lievre 2448: }
2449: for(j=1; j<=nlstate+ndeath;j++) {
2450: kk1=0.;kk2=0;
2451: for(i=1; i<=nlstate;i++) {
2452: if (mobilav==1)
2453: kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
2454: else {
2455: kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
2456: }
2457:
2458: }
2459: if (h==(int)(calagedate+12*cpt)){
2460: fprintf(ficresf," %.3f", kk1);
2461:
2462: }
2463: }
2464: }
2465: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2466: }
2467: }
2468: }
2469: }
2470:
2471: if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2472:
2473: fclose(ficresf);
2474: }
2475: /************** Forecasting ******************/
1.35 lievre 2476: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
1.27 lievre 2477:
2478: int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
2479: int *popage;
2480: double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
2481: double *popeffectif,*popcount;
2482: double ***p3mat,***tabpop,***tabpopprev;
2483: char filerespop[FILENAMELENGTH];
2484:
1.28 lievre 2485: tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2486: tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2487: agelim=AGESUP;
2488: calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
1.27 lievre 2489:
1.35 lievre 2490: prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
1.28 lievre 2491:
2492:
1.27 lievre 2493: strcpy(filerespop,"pop");
2494: strcat(filerespop,fileres);
2495: if((ficrespop=fopen(filerespop,"w"))==NULL) {
2496: printf("Problem with forecast resultfile: %s\n", filerespop);
2497: }
2498: printf("Computing forecasting: result on file '%s' \n", filerespop);
2499:
2500: if (cptcoveff==0) ncodemax[cptcoveff]=1;
2501:
2502: if (mobilav==1) {
2503: mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.35 lievre 2504: movingaverage(agedeb, fage, ageminpar, mobaverage);
1.27 lievre 2505: }
2506:
2507: stepsize=(int) (stepm+YEARM-1)/YEARM;
2508: if (stepm<=12) stepsize=1;
2509:
2510: agelim=AGESUP;
2511:
2512: hstepm=1;
2513: hstepm=hstepm/stepm;
2514:
2515: if (popforecast==1) {
2516: if((ficpop=fopen(popfile,"r"))==NULL) {
2517: printf("Problem with population file : %s\n",popfile);exit(0);
2518: }
2519: popage=ivector(0,AGESUP);
2520: popeffectif=vector(0,AGESUP);
2521: popcount=vector(0,AGESUP);
2522:
2523: i=1;
2524: while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
2525:
2526: imx=i;
2527: for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
2528: }
2529:
2530: for(cptcov=1;cptcov<=i2;cptcov++){
2531: for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
2532: k=k+1;
2533: fprintf(ficrespop,"\n#******");
2534: for(j=1;j<=cptcoveff;j++) {
2535: fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
2536: }
2537: fprintf(ficrespop,"******\n");
1.28 lievre 2538: fprintf(ficrespop,"# Age");
1.27 lievre 2539: for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
2540: if (popforecast==1) fprintf(ficrespop," [Population]");
2541:
2542: for (cpt=0; cpt<=0;cpt++) {
1.28 lievre 2543: fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
1.27 lievre 2544:
1.35 lievre 2545: for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
1.27 lievre 2546: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
2547: nhstepm = nhstepm/hstepm;
2548:
2549: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2550: oldm=oldms;savm=savms;
2551: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
2552:
2553: for (h=0; h<=nhstepm; h++){
2554: if (h==(int) (calagedate+YEARM*cpt)) {
1.28 lievre 2555: fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
1.27 lievre 2556: }
2557: for(j=1; j<=nlstate+ndeath;j++) {
2558: kk1=0.;kk2=0;
2559: for(i=1; i<=nlstate;i++) {
2560: if (mobilav==1)
2561: kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
2562: else {
2563: kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
2564: }
2565: }
2566: if (h==(int)(calagedate+12*cpt)){
2567: tabpop[(int)(agedeb)][j][cptcod]=kk1;
2568: /*fprintf(ficrespop," %.3f", kk1);
2569: if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
2570: }
2571: }
2572: for(i=1; i<=nlstate;i++){
2573: kk1=0.;
2574: for(j=1; j<=nlstate;j++){
1.28 lievre 2575: kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
1.27 lievre 2576: }
2577: tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
2578: }
2579:
1.28 lievre 2580: if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)
2581: fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
1.27 lievre 2582: }
2583: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2584: }
2585: }
2586:
2587: /******/
2588:
1.28 lievre 2589: for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
2590: fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
1.35 lievre 2591: for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
1.27 lievre 2592: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
2593: nhstepm = nhstepm/hstepm;
2594:
2595: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2596: oldm=oldms;savm=savms;
2597: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
2598: for (h=0; h<=nhstepm; h++){
2599: if (h==(int) (calagedate+YEARM*cpt)) {
1.28 lievre 2600: fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
1.27 lievre 2601: }
2602: for(j=1; j<=nlstate+ndeath;j++) {
2603: kk1=0.;kk2=0;
2604: for(i=1; i<=nlstate;i++) {
2605: kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];
2606: }
1.28 lievre 2607: if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);
1.27 lievre 2608: }
2609: }
2610: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2611: }
2612: }
2613: }
2614: }
2615:
2616: if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2617:
2618: if (popforecast==1) {
2619: free_ivector(popage,0,AGESUP);
2620: free_vector(popeffectif,0,AGESUP);
2621: free_vector(popcount,0,AGESUP);
2622: }
2623: free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2624: free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2625: fclose(ficrespop);
2626: }
2627:
1.2 lievre 2628: /***********************************************/
2629: /**************** Main Program *****************/
2630: /***********************************************/
2631:
1.22 brouard 2632: int main(int argc, char *argv[])
1.2 lievre 2633: {
2634:
1.8 lievre 2635: int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
1.2 lievre 2636: double agedeb, agefin,hf;
1.35 lievre 2637: double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
1.2 lievre 2638:
2639: double fret;
2640: double **xi,tmp,delta;
2641:
2642: double dum; /* Dummy variable */
2643: double ***p3mat;
2644: int *indx;
2645: char line[MAXLINE], linepar[MAXLINE];
2646: char title[MAXLINE];
1.25 lievre 2647: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH];
2648: char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
1.22 brouard 2649:
1.29 lievre 2650: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.22 brouard 2651:
1.2 lievre 2652: char filerest[FILENAMELENGTH];
2653: char fileregp[FILENAMELENGTH];
1.16 lievre 2654: char popfile[FILENAMELENGTH];
1.2 lievre 2655: char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
2656: int firstobs=1, lastobs=10;
2657: int sdeb, sfin; /* Status at beginning and end */
2658: int c, h , cpt,l;
2659: int ju,jl, mi;
1.7 lievre 2660: int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.14 lievre 2661: int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
1.19 lievre 2662: int mobilav=0,popforecast=0;
1.2 lievre 2663: int hstepm, nhstepm;
1.41 lievre 2664: double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
1.14 lievre 2665:
1.2 lievre 2666: double bage, fage, age, agelim, agebase;
2667: double ftolpl=FTOL;
2668: double **prlim;
2669: double *severity;
2670: double ***param; /* Matrix of parameters */
2671: double *p;
2672: double **matcov; /* Matrix of covariance */
2673: double ***delti3; /* Scale */
2674: double *delti; /* Scale */
2675: double ***eij, ***vareij;
2676: double **varpl; /* Variances of prevalence limits by age */
2677: double *epj, vepp;
1.16 lievre 2678: double kk1, kk2;
1.27 lievre 2679: double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
2680:
1.13 lievre 2681:
1.41.2.2! brouard 2682: char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";
1.2 lievre 2683: char *alph[]={"a","a","b","c","d","e"}, str[4];
1.5 lievre 2684:
1.13 lievre 2685:
1.2 lievre 2686: char z[1]="c", occ;
2687: #include <sys/time.h>
2688: #include <time.h>
2689: char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1.19 lievre 2690:
1.2 lievre 2691: /* long total_usecs;
2692: struct timeval start_time, end_time;
2693:
2694: gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.35 lievre 2695: getcwd(pathcd, size);
1.2 lievre 2696:
1.22 brouard 2697: printf("\n%s",version);
2698: if(argc <=1){
2699: printf("\nEnter the parameter file name: ");
2700: scanf("%s",pathtot);
2701: }
2702: else{
2703: strcpy(pathtot,argv[1]);
2704: }
2705: /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
1.5 lievre 2706: /*cygwin_split_path(pathtot,path,optionfile);
2707: printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
2708: /* cutv(path,optionfile,pathtot,'\\');*/
2709:
1.22 brouard 2710: split(pathtot,path,optionfile,optionfilext,optionfilefiname);
2711: printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.2 lievre 2712: chdir(path);
2713: replace(pathc,path);
2714:
2715: /*-------- arguments in the command line --------*/
2716:
2717: strcpy(fileres,"r");
1.22 brouard 2718: strcat(fileres, optionfilefiname);
2719: strcat(fileres,".txt"); /* Other files have txt extension */
1.2 lievre 2720:
2721: /*---------arguments file --------*/
2722:
2723: if((ficpar=fopen(optionfile,"r"))==NULL) {
2724: printf("Problem with optionfile %s\n",optionfile);
2725: goto end;
2726: }
2727:
2728: strcpy(filereso,"o");
2729: strcat(filereso,fileres);
2730: if((ficparo=fopen(filereso,"w"))==NULL) {
2731: printf("Problem with Output resultfile: %s\n", filereso);goto end;
2732: }
2733:
2734: /* Reads comments: lines beginning with '#' */
2735: while((c=getc(ficpar))=='#' && c!= EOF){
2736: ungetc(c,ficpar);
2737: fgets(line, MAXLINE, ficpar);
2738: puts(line);
2739: fputs(line,ficparo);
2740: }
2741: ungetc(c,ficpar);
2742:
1.34 brouard 2743: fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
2744: printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
2745: fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
1.14 lievre 2746: while((c=getc(ficpar))=='#' && c!= EOF){
2747: ungetc(c,ficpar);
2748: fgets(line, MAXLINE, ficpar);
2749: puts(line);
2750: fputs(line,ficparo);
2751: }
2752: ungetc(c,ficpar);
2753:
1.19 lievre 2754:
1.8 lievre 2755: covar=matrix(0,NCOVMAX,1,n);
2756: cptcovn=0;
2757: if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
1.2 lievre 2758:
2759: ncovmodel=2+cptcovn;
2760: nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
2761:
2762: /* Read guess parameters */
2763: /* Reads comments: lines beginning with '#' */
2764: while((c=getc(ficpar))=='#' && c!= EOF){
2765: ungetc(c,ficpar);
2766: fgets(line, MAXLINE, ficpar);
2767: puts(line);
2768: fputs(line,ficparo);
2769: }
2770: ungetc(c,ficpar);
2771:
2772: param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
2773: for(i=1; i <=nlstate; i++)
2774: for(j=1; j <=nlstate+ndeath-1; j++){
2775: fscanf(ficpar,"%1d%1d",&i1,&j1);
2776: fprintf(ficparo,"%1d%1d",i1,j1);
2777: printf("%1d%1d",i,j);
2778: for(k=1; k<=ncovmodel;k++){
2779: fscanf(ficpar," %lf",¶m[i][j][k]);
2780: printf(" %lf",param[i][j][k]);
2781: fprintf(ficparo," %lf",param[i][j][k]);
2782: }
2783: fscanf(ficpar,"\n");
2784: printf("\n");
2785: fprintf(ficparo,"\n");
2786: }
2787:
1.12 lievre 2788: npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
2789:
1.2 lievre 2790: p=param[1][1];
2791:
2792: /* Reads comments: lines beginning with '#' */
2793: while((c=getc(ficpar))=='#' && c!= EOF){
2794: ungetc(c,ficpar);
2795: fgets(line, MAXLINE, ficpar);
2796: puts(line);
2797: fputs(line,ficparo);
2798: }
2799: ungetc(c,ficpar);
2800:
2801: delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
2802: delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
2803: for(i=1; i <=nlstate; i++){
2804: for(j=1; j <=nlstate+ndeath-1; j++){
2805: fscanf(ficpar,"%1d%1d",&i1,&j1);
2806: printf("%1d%1d",i,j);
2807: fprintf(ficparo,"%1d%1d",i1,j1);
2808: for(k=1; k<=ncovmodel;k++){
2809: fscanf(ficpar,"%le",&delti3[i][j][k]);
2810: printf(" %le",delti3[i][j][k]);
2811: fprintf(ficparo," %le",delti3[i][j][k]);
2812: }
2813: fscanf(ficpar,"\n");
2814: printf("\n");
2815: fprintf(ficparo,"\n");
2816: }
2817: }
2818: delti=delti3[1][1];
2819:
2820: /* Reads comments: lines beginning with '#' */
2821: while((c=getc(ficpar))=='#' && c!= EOF){
2822: ungetc(c,ficpar);
2823: fgets(line, MAXLINE, ficpar);
2824: puts(line);
2825: fputs(line,ficparo);
2826: }
2827: ungetc(c,ficpar);
2828:
2829: matcov=matrix(1,npar,1,npar);
2830: for(i=1; i <=npar; i++){
2831: fscanf(ficpar,"%s",&str);
2832: printf("%s",str);
2833: fprintf(ficparo,"%s",str);
2834: for(j=1; j <=i; j++){
2835: fscanf(ficpar," %le",&matcov[i][j]);
2836: printf(" %.5le",matcov[i][j]);
2837: fprintf(ficparo," %.5le",matcov[i][j]);
2838: }
2839: fscanf(ficpar,"\n");
2840: printf("\n");
2841: fprintf(ficparo,"\n");
2842: }
2843: for(i=1; i <=npar; i++)
2844: for(j=i+1;j<=npar;j++)
2845: matcov[i][j]=matcov[j][i];
2846:
2847: printf("\n");
2848:
2849:
1.29 lievre 2850: /*-------- Rewriting paramater file ----------*/
2851: strcpy(rfileres,"r"); /* "Rparameterfile */
2852: strcat(rfileres,optionfilefiname); /* Parameter file first name*/
2853: strcat(rfileres,"."); /* */
2854: strcat(rfileres,optionfilext); /* Other files have txt extension */
2855: if((ficres =fopen(rfileres,"w"))==NULL) {
2856: printf("Problem writing new parameter file: %s\n", fileres);goto end;
1.2 lievre 2857: }
2858: fprintf(ficres,"#%s\n",version);
2859:
1.29 lievre 2860: /*-------- data file ----------*/
1.2 lievre 2861: if((fic=fopen(datafile,"r"))==NULL) {
2862: printf("Problem with datafile: %s\n", datafile);goto end;
2863: }
2864:
2865: n= lastobs;
2866: severity = vector(1,maxwav);
2867: outcome=imatrix(1,maxwav+1,1,n);
2868: num=ivector(1,n);
2869: moisnais=vector(1,n);
2870: annais=vector(1,n);
2871: moisdc=vector(1,n);
2872: andc=vector(1,n);
2873: agedc=vector(1,n);
2874: cod=ivector(1,n);
2875: weight=vector(1,n);
2876: for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
2877: mint=matrix(1,maxwav,1,n);
2878: anint=matrix(1,maxwav,1,n);
2879: s=imatrix(1,maxwav+1,1,n);
2880: adl=imatrix(1,maxwav+1,1,n);
2881: tab=ivector(1,NCOVMAX);
1.3 lievre 2882: ncodemax=ivector(1,8);
1.2 lievre 2883:
1.12 lievre 2884: i=1;
1.2 lievre 2885: while (fgets(line, MAXLINE, fic) != NULL) {
2886: if ((i >= firstobs) && (i <=lastobs)) {
2887:
2888: for (j=maxwav;j>=1;j--){
2889: cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
2890: strcpy(line,stra);
2891: cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2892: cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2893: }
2894:
2895: cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
2896: cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
2897:
2898: cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
2899: cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
2900:
2901: cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
1.34 brouard 2902: for (j=ncovcol;j>=1;j--){
1.2 lievre 2903: cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2904: }
2905: num[i]=atol(stra);
1.12 lievre 2906:
2907: /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
2908: printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
1.2 lievre 2909:
2910: i=i+1;
2911: }
2912: }
1.12 lievre 2913: /* printf("ii=%d", ij);
2914: scanf("%d",i);*/
2915: imx=i-1; /* Number of individuals */
1.3 lievre 2916:
1.12 lievre 2917: /* for (i=1; i<=imx; i++){
2918: if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
2919: if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
2920: if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
1.35 lievre 2921: }*/
1.39 lievre 2922: /* for (i=1; i<=imx; i++){
1.35 lievre 2923: if (s[4][i]==9) s[4][i]=-1;
1.39 lievre 2924: printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
2925:
1.35 lievre 2926:
1.2 lievre 2927: /* Calculation of the number of parameter from char model*/
1.7 lievre 2928: Tvar=ivector(1,15);
2929: Tprod=ivector(1,15);
2930: Tvaraff=ivector(1,15);
2931: Tvard=imatrix(1,15,1,2);
1.6 lievre 2932: Tage=ivector(1,15);
1.2 lievre 2933:
2934: if (strlen(model) >1){
1.7 lievre 2935: j=0, j1=0, k1=1, k2=1;
1.2 lievre 2936: j=nbocc(model,'+');
1.6 lievre 2937: j1=nbocc(model,'*');
1.2 lievre 2938: cptcovn=j+1;
1.7 lievre 2939: cptcovprod=j1;
1.3 lievre 2940:
1.2 lievre 2941: strcpy(modelsav,model);
1.8 lievre 2942: if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
2943: printf("Error. Non available option model=%s ",model);
2944: goto end;
2945: }
2946:
2947: for(i=(j+1); i>=1;i--){
2948: cutv(stra,strb,modelsav,'+');
2949: if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);
2950: /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
2951: /*scanf("%d",i);*/
2952: if (strchr(strb,'*')) {
2953: cutv(strd,strc,strb,'*');
2954: if (strcmp(strc,"age")==0) {
1.7 lievre 2955: cptcovprod--;
1.8 lievre 2956: cutv(strb,stre,strd,'V');
2957: Tvar[i]=atoi(stre);
2958: cptcovage++;
2959: Tage[cptcovage]=i;
2960: /*printf("stre=%s ", stre);*/
1.7 lievre 2961: }
1.8 lievre 2962: else if (strcmp(strd,"age")==0) {
1.7 lievre 2963: cptcovprod--;
1.8 lievre 2964: cutv(strb,stre,strc,'V');
2965: Tvar[i]=atoi(stre);
2966: cptcovage++;
2967: Tage[cptcovage]=i;
1.7 lievre 2968: }
2969: else {
1.8 lievre 2970: cutv(strb,stre,strc,'V');
1.34 brouard 2971: Tvar[i]=ncovcol+k1;
1.8 lievre 2972: cutv(strb,strc,strd,'V');
2973: Tprod[k1]=i;
2974: Tvard[k1][1]=atoi(strc);
2975: Tvard[k1][2]=atoi(stre);
2976: Tvar[cptcovn+k2]=Tvard[k1][1];
2977: Tvar[cptcovn+k2+1]=Tvard[k1][2];
1.7 lievre 2978: for (k=1; k<=lastobs;k++)
1.34 brouard 2979: covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
1.8 lievre 2980: k1++;
2981: k2=k2+2;
1.7 lievre 2982: }
1.2 lievre 2983: }
1.8 lievre 2984: else {
2985: /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
2986: /* scanf("%d",i);*/
2987: cutv(strd,strc,strb,'V');
2988: Tvar[i]=atoi(strc);
2989: }
2990: strcpy(modelsav,stra);
2991: /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
2992: scanf("%d",i);*/
1.2 lievre 2993: }
1.8 lievre 2994: }
2995:
1.35 lievre 2996: /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
1.8 lievre 2997: printf("cptcovprod=%d ", cptcovprod);
2998: scanf("%d ",i);*/
1.2 lievre 2999: fclose(fic);
3000:
1.7 lievre 3001: /* if(mle==1){*/
1.2 lievre 3002: if (weightopt != 1) { /* Maximisation without weights*/
3003: for(i=1;i<=n;i++) weight[i]=1.0;
3004: }
3005: /*-calculation of age at interview from date of interview and age at death -*/
3006: agev=matrix(1,maxwav,1,imx);
1.12 lievre 3007:
1.35 lievre 3008: for (i=1; i<=imx; i++) {
3009: for(m=2; (m<= maxwav); m++) {
1.12 lievre 3010: if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
3011: anint[m][i]=9999;
3012: s[m][i]=-1;
3013: }
1.35 lievre 3014: if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
3015: }
3016: }
3017:
1.2 lievre 3018: for (i=1; i<=imx; i++) {
3019: agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
3020: for(m=1; (m<= maxwav); m++){
3021: if(s[m][i] >0){
1.35 lievre 3022: if (s[m][i] >= nlstate+1) {
1.2 lievre 3023: if(agedc[i]>0)
3024: if(moisdc[i]!=99 && andc[i]!=9999)
1.35 lievre 3025: agev[m][i]=agedc[i];
3026: /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
3027: else {
1.8 lievre 3028: if (andc[i]!=9999){
1.2 lievre 3029: printf("Warning negative age at death: %d line:%d\n",num[i],i);
3030: agev[m][i]=-1;
1.8 lievre 3031: }
1.2 lievre 3032: }
3033: }
3034: else if(s[m][i] !=9){ /* Should no more exist */
3035: agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.3 lievre 3036: if(mint[m][i]==99 || anint[m][i]==9999)
1.2 lievre 3037: agev[m][i]=1;
3038: else if(agev[m][i] <agemin){
3039: agemin=agev[m][i];
3040: /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
3041: }
3042: else if(agev[m][i] >agemax){
3043: agemax=agev[m][i];
3044: /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
3045: }
3046: /*agev[m][i]=anint[m][i]-annais[i];*/
3047: /* agev[m][i] = age[i]+2*m;*/
3048: }
3049: else { /* =9 */
3050: agev[m][i]=1;
3051: s[m][i]=-1;
3052: }
3053: }
3054: else /*= 0 Unknown */
3055: agev[m][i]=1;
3056: }
3057:
3058: }
3059: for (i=1; i<=imx; i++) {
3060: for(m=1; (m<= maxwav); m++){
3061: if (s[m][i] > (nlstate+ndeath)) {
3062: printf("Error: Wrong value in nlstate or ndeath\n");
3063: goto end;
3064: }
3065: }
3066: }
3067:
3068: printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
3069:
3070: free_vector(severity,1,maxwav);
3071: free_imatrix(outcome,1,maxwav+1,1,n);
3072: free_vector(moisnais,1,n);
3073: free_vector(annais,1,n);
1.17 lievre 3074: /* free_matrix(mint,1,maxwav,1,n);
3075: free_matrix(anint,1,maxwav,1,n);*/
1.2 lievre 3076: free_vector(moisdc,1,n);
3077: free_vector(andc,1,n);
3078:
3079:
3080: wav=ivector(1,imx);
3081: dh=imatrix(1,lastpass-firstpass+1,1,imx);
3082: mw=imatrix(1,lastpass-firstpass+1,1,imx);
3083:
3084: /* Concatenates waves */
3085: concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
3086:
3087:
1.6 lievre 3088: Tcode=ivector(1,100);
1.8 lievre 3089: nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
1.7 lievre 3090: ncodemax[1]=1;
3091: if (cptcovn > 0) tricode(Tvar,nbcode,imx);
3092:
1.2 lievre 3093: codtab=imatrix(1,100,1,10);
3094: h=0;
1.7 lievre 3095: m=pow(2,cptcoveff);
1.2 lievre 3096:
1.7 lievre 3097: for(k=1;k<=cptcoveff; k++){
1.2 lievre 3098: for(i=1; i <=(m/pow(2,k));i++){
3099: for(j=1; j <= ncodemax[k]; j++){
1.7 lievre 3100: for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
1.2 lievre 3101: h++;
1.35 lievre 3102: if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
3103: /* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
1.2 lievre 3104: }
3105: }
3106: }
3107: }
1.35 lievre 3108: /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
3109: codtab[1][2]=1;codtab[2][2]=2; */
3110: /* for(i=1; i <=m ;i++){
3111: for(k=1; k <=cptcovn; k++){
3112: printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
3113: }
3114: printf("\n");
3115: }
3116: scanf("%d",i);*/
1.2 lievre 3117:
3118: /* Calculates basic frequencies. Computes observed prevalence at single age
3119: and prints on file fileres'p'. */
1.18 lievre 3120:
1.19 lievre 3121:
1.18 lievre 3122:
1.19 lievre 3123: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.2 lievre 3124: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3125: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3126: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3127: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.12 lievre 3128:
1.2 lievre 3129: /* For Powell, parameters are in a vector p[] starting at p[1]
3130: so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
3131: p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.7 lievre 3132:
3133: if(mle==1){
1.2 lievre 3134: mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.7 lievre 3135: }
1.2 lievre 3136:
3137: /*--------- results files --------------*/
1.34 brouard 3138: fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
1.19 lievre 3139:
1.16 lievre 3140:
1.2 lievre 3141: jk=1;
1.34 brouard 3142: fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
3143: printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.2 lievre 3144: for(i=1,jk=1; i <=nlstate; i++){
3145: for(k=1; k <=(nlstate+ndeath); k++){
3146: if (k != i)
3147: {
3148: printf("%d%d ",i,k);
3149: fprintf(ficres,"%1d%1d ",i,k);
3150: for(j=1; j <=ncovmodel; j++){
3151: printf("%f ",p[jk]);
3152: fprintf(ficres,"%f ",p[jk]);
3153: jk++;
3154: }
3155: printf("\n");
3156: fprintf(ficres,"\n");
3157: }
3158: }
3159: }
1.7 lievre 3160: if(mle==1){
1.2 lievre 3161: /* Computing hessian and covariance matrix */
3162: ftolhess=ftol; /* Usually correct */
3163: hesscov(matcov, p, npar, delti, ftolhess, func);
1.7 lievre 3164: }
1.34 brouard 3165: fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
3166: printf("# Scales (for hessian or gradient estimation)\n");
1.2 lievre 3167: for(i=1,jk=1; i <=nlstate; i++){
3168: for(j=1; j <=nlstate+ndeath; j++){
3169: if (j!=i) {
3170: fprintf(ficres,"%1d%1d",i,j);
3171: printf("%1d%1d",i,j);
3172: for(k=1; k<=ncovmodel;k++){
3173: printf(" %.5e",delti[jk]);
3174: fprintf(ficres," %.5e",delti[jk]);
3175: jk++;
3176: }
3177: printf("\n");
3178: fprintf(ficres,"\n");
3179: }
3180: }
1.18 lievre 3181: }
1.2 lievre 3182:
3183: k=1;
1.34 brouard 3184: fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
3185: printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
1.2 lievre 3186: for(i=1;i<=npar;i++){
3187: /* if (k>nlstate) k=1;
3188: i1=(i-1)/(ncovmodel*nlstate)+1;
3189: fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
3190: printf("%s%d%d",alph[k],i1,tab[i]);*/
3191: fprintf(ficres,"%3d",i);
3192: printf("%3d",i);
3193: for(j=1; j<=i;j++){
3194: fprintf(ficres," %.5e",matcov[i][j]);
3195: printf(" %.5e",matcov[i][j]);
3196: }
3197: fprintf(ficres,"\n");
3198: printf("\n");
3199: k++;
3200: }
3201:
3202: while((c=getc(ficpar))=='#' && c!= EOF){
3203: ungetc(c,ficpar);
3204: fgets(line, MAXLINE, ficpar);
3205: puts(line);
3206: fputs(line,ficparo);
3207: }
3208: ungetc(c,ficpar);
1.36 brouard 3209: estepm=0;
3210: fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
3211: if (estepm==0 || estepm < stepm) estepm=stepm;
1.2 lievre 3212: if (fage <= 2) {
1.35 lievre 3213: bage = ageminpar;
1.28 lievre 3214: fage = agemaxpar;
1.2 lievre 3215: }
1.22 brouard 3216:
3217: fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.36 brouard 3218: fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
3219: fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
1.19 lievre 3220:
3221: while((c=getc(ficpar))=='#' && c!= EOF){
3222: ungetc(c,ficpar);
3223: fgets(line, MAXLINE, ficpar);
3224: puts(line);
3225: fputs(line,ficparo);
3226: }
3227: ungetc(c,ficpar);
3228:
1.25 lievre 3229: fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);
3230: fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
3231: fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
1.19 lievre 3232:
3233: while((c=getc(ficpar))=='#' && c!= EOF){
3234: ungetc(c,ficpar);
3235: fgets(line, MAXLINE, ficpar);
3236: puts(line);
3237: fputs(line,ficparo);
3238: }
3239: ungetc(c,ficpar);
3240:
1.7 lievre 3241:
1.19 lievre 3242: dateprev1=anprev1+mprev1/12.+jprev1/365.;
3243: dateprev2=anprev2+mprev2/12.+jprev2/365.;
3244:
3245: fscanf(ficpar,"pop_based=%d\n",&popbased);
1.28 lievre 3246: fprintf(ficparo,"pop_based=%d\n",popbased);
3247: fprintf(ficres,"pop_based=%d\n",popbased);
3248:
3249: while((c=getc(ficpar))=='#' && c!= EOF){
3250: ungetc(c,ficpar);
3251: fgets(line, MAXLINE, ficpar);
3252: puts(line);
3253: fputs(line,ficparo);
3254: }
3255: ungetc(c,ficpar);
1.19 lievre 3256:
1.28 lievre 3257: fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);
3258: fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
3259: fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
3260:
3261:
3262: while((c=getc(ficpar))=='#' && c!= EOF){
1.19 lievre 3263: ungetc(c,ficpar);
3264: fgets(line, MAXLINE, ficpar);
3265: puts(line);
3266: fputs(line,ficparo);
3267: }
3268: ungetc(c,ficpar);
1.28 lievre 3269:
3270: fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
3271: fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
3272: fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
1.19 lievre 3273:
1.26 lievre 3274: freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
1.19 lievre 3275:
1.25 lievre 3276: /*------------ gnuplot -------------*/
1.35 lievre 3277: printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);
1.25 lievre 3278:
3279: /*------------ free_vector -------------*/
3280: chdir(path);
1.2 lievre 3281:
1.25 lievre 3282: free_ivector(wav,1,imx);
3283: free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
3284: free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
3285: free_ivector(num,1,n);
3286: free_vector(agedc,1,n);
3287: /*free_matrix(covar,1,NCOVMAX,1,n);*/
3288: fclose(ficparo);
3289: fclose(ficres);
1.28 lievre 3290:
1.2 lievre 3291: /*--------- index.htm --------*/
3292:
1.36 brouard 3293: printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);
1.2 lievre 3294:
1.25 lievre 3295:
1.2 lievre 3296: /*--------------- Prevalence limit --------------*/
3297:
3298: strcpy(filerespl,"pl");
3299: strcat(filerespl,fileres);
3300: if((ficrespl=fopen(filerespl,"w"))==NULL) {
3301: printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
3302: }
3303: printf("Computing prevalence limit: result on file '%s' \n", filerespl);
3304: fprintf(ficrespl,"#Prevalence limit\n");
3305: fprintf(ficrespl,"#Age ");
3306: for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
3307: fprintf(ficrespl,"\n");
3308:
3309: prlim=matrix(1,nlstate,1,nlstate);
3310: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3311: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3312: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3313: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
3314: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
3315: k=0;
1.35 lievre 3316: agebase=ageminpar;
1.28 lievre 3317: agelim=agemaxpar;
1.2 lievre 3318: ftolpl=1.e-10;
1.7 lievre 3319: i1=cptcoveff;
1.2 lievre 3320: if (cptcovn < 1){i1=1;}
3321:
3322: for(cptcov=1;cptcov<=i1;cptcov++){
3323: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3324: k=k+1;
3325: /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
1.6 lievre 3326: fprintf(ficrespl,"\n#******");
1.7 lievre 3327: for(j=1;j<=cptcoveff;j++)
3328: fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3329: fprintf(ficrespl,"******\n");
3330:
3331: for (age=agebase; age<=agelim; age++){
3332: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
3333: fprintf(ficrespl,"%.0f",age );
3334: for(i=1; i<=nlstate;i++)
3335: fprintf(ficrespl," %.5f", prlim[i][i]);
3336: fprintf(ficrespl,"\n");
3337: }
3338: }
3339: }
3340: fclose(ficrespl);
1.13 lievre 3341:
1.2 lievre 3342: /*------------- h Pij x at various ages ------------*/
3343:
3344: strcpy(filerespij,"pij"); strcat(filerespij,fileres);
3345: if((ficrespij=fopen(filerespij,"w"))==NULL) {
3346: printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
3347: }
3348: printf("Computing pij: result on file '%s' \n", filerespij);
3349:
3350: stepsize=(int) (stepm+YEARM-1)/YEARM;
1.13 lievre 3351: /*if (stepm<=24) stepsize=2;*/
1.2 lievre 3352:
3353: agelim=AGESUP;
3354: hstepm=stepsize*YEARM; /* Every year of age */
3355: hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
3356:
3357: k=0;
3358: for(cptcov=1;cptcov<=i1;cptcov++){
3359: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3360: k=k+1;
3361: fprintf(ficrespij,"\n#****** ");
1.7 lievre 3362: for(j=1;j<=cptcoveff;j++)
3363: fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3364: fprintf(ficrespij,"******\n");
3365:
3366: for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
3367: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
3368: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
3369: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
3370: oldm=oldms;savm=savms;
3371: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
3372: fprintf(ficrespij,"# Age");
3373: for(i=1; i<=nlstate;i++)
3374: for(j=1; j<=nlstate+ndeath;j++)
3375: fprintf(ficrespij," %1d-%1d",i,j);
3376: fprintf(ficrespij,"\n");
1.40 lievre 3377: for (h=0; h<=nhstepm; h++){
1.2 lievre 3378: fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
3379: for(i=1; i<=nlstate;i++)
3380: for(j=1; j<=nlstate+ndeath;j++)
3381: fprintf(ficrespij," %.5f", p3mat[i][j][h]);
3382: fprintf(ficrespij,"\n");
1.40 lievre 3383: }
1.2 lievre 3384: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
3385: fprintf(ficrespij,"\n");
3386: }
3387: }
3388: }
3389:
1.39 lievre 3390: varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
1.13 lievre 3391:
1.2 lievre 3392: fclose(ficrespij);
3393:
1.27 lievre 3394:
3395: /*---------- Forecasting ------------------*/
1.32 brouard 3396: if((stepm == 1) && (strcmp(model,".")==0)){
1.27 lievre 3397: prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
1.32 brouard 3398: if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
1.41 lievre 3399: }
1.21 lievre 3400: else{
3401: erreur=108;
1.32 brouard 3402: printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
1.21 lievre 3403: }
1.26 lievre 3404:
1.27 lievre 3405:
1.2 lievre 3406: /*---------- Health expectancies and variances ------------*/
3407:
3408: strcpy(filerest,"t");
3409: strcat(filerest,fileres);
3410: if((ficrest=fopen(filerest,"w"))==NULL) {
3411: printf("Problem with total LE resultfile: %s\n", filerest);goto end;
3412: }
3413: printf("Computing Total LEs with variances: file '%s' \n", filerest);
3414:
3415:
3416: strcpy(filerese,"e");
3417: strcat(filerese,fileres);
3418: if((ficreseij=fopen(filerese,"w"))==NULL) {
3419: printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
3420: }
3421: printf("Computing Health Expectancies: result on file '%s' \n", filerese);
3422:
3423: strcpy(fileresv,"v");
3424: strcat(fileresv,fileres);
3425: if((ficresvij=fopen(fileresv,"w"))==NULL) {
3426: printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
3427: }
3428: printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
1.41 lievre 3429: calagedate=-1;
3430: prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
1.2 lievre 3431:
3432: k=0;
3433: for(cptcov=1;cptcov<=i1;cptcov++){
3434: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3435: k=k+1;
3436: fprintf(ficrest,"\n#****** ");
1.7 lievre 3437: for(j=1;j<=cptcoveff;j++)
3438: fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3439: fprintf(ficrest,"******\n");
3440:
3441: fprintf(ficreseij,"\n#****** ");
1.7 lievre 3442: for(j=1;j<=cptcoveff;j++)
1.35 lievre 3443: fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3444: fprintf(ficreseij,"******\n");
3445:
3446: fprintf(ficresvij,"\n#****** ");
1.7 lievre 3447: for(j=1;j<=cptcoveff;j++)
1.35 lievre 3448: fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3449: fprintf(ficresvij,"******\n");
3450:
3451: eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
3452: oldm=oldms;savm=savms;
1.41 lievre 3453: evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);
3454:
1.2 lievre 3455: vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
3456: oldm=oldms;savm=savms;
1.36 brouard 3457: varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);
1.26 lievre 3458:
3459:
3460:
1.2 lievre 3461: fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
3462: for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
3463: fprintf(ficrest,"\n");
1.26 lievre 3464:
1.2 lievre 3465: epj=vector(1,nlstate+1);
3466: for(age=bage; age <=fage ;age++){
3467: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
1.14 lievre 3468: if (popbased==1) {
3469: for(i=1; i<=nlstate;i++)
3470: prlim[i][i]=probs[(int)age][i][k];
3471: }
3472:
1.33 brouard 3473: fprintf(ficrest," %4.0f",age);
1.2 lievre 3474: for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
3475: for(i=1, epj[j]=0.;i <=nlstate;i++) {
1.33 brouard 3476: epj[j] += prlim[i][i]*eij[i][j][(int)age];
1.41 lievre 3477: /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
1.2 lievre 3478: }
3479: epj[nlstate+1] +=epj[j];
3480: }
1.41 lievre 3481:
1.2 lievre 3482: for(i=1, vepp=0.;i <=nlstate;i++)
3483: for(j=1;j <=nlstate;j++)
3484: vepp += vareij[i][j][(int)age];
1.38 lievre 3485: fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
1.2 lievre 3486: for(j=1;j <=nlstate;j++){
1.38 lievre 3487: fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
1.2 lievre 3488: }
3489: fprintf(ficrest,"\n");
3490: }
3491: }
3492: }
1.41 lievre 3493: free_matrix(mint,1,maxwav,1,n);
3494: free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
3495: free_vector(weight,1,n);
1.27 lievre 3496: fclose(ficreseij);
3497: fclose(ficresvij);
1.2 lievre 3498: fclose(ficrest);
3499: fclose(ficpar);
3500: free_vector(epj,1,nlstate+1);
1.26 lievre 3501:
1.2 lievre 3502: /*------- Variance limit prevalence------*/
3503:
1.27 lievre 3504: strcpy(fileresvpl,"vpl");
1.2 lievre 3505: strcat(fileresvpl,fileres);
3506: if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
3507: printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
3508: exit(0);
3509: }
3510: printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
3511:
1.27 lievre 3512: k=0;
3513: for(cptcov=1;cptcov<=i1;cptcov++){
3514: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3515: k=k+1;
3516: fprintf(ficresvpl,"\n#****** ");
3517: for(j=1;j<=cptcoveff;j++)
3518: fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
3519: fprintf(ficresvpl,"******\n");
3520:
3521: varpl=matrix(1,nlstate,(int) bage, (int) fage);
3522: oldm=oldms;savm=savms;
1.2 lievre 3523: varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
1.27 lievre 3524: }
1.2 lievre 3525: }
3526:
3527: fclose(ficresvpl);
3528:
3529: /*---------- End : free ----------------*/
3530: free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
3531:
3532: free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
3533: free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
3534:
3535:
3536: free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
3537: free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
3538: free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
3539: free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
1.13 lievre 3540:
1.2 lievre 3541: free_matrix(matcov,1,npar,1,npar);
3542: free_vector(delti,1,npar);
1.26 lievre 3543: free_matrix(agev,1,maxwav,1,imx);
1.2 lievre 3544: free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
3545:
1.21 lievre 3546: if(erreur >0)
1.34 brouard 3547: printf("End of Imach with error or warning %d\n",erreur);
1.21 lievre 3548: else printf("End of Imach\n");
1.2 lievre 3549: /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
3550:
3551: /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
3552: /*printf("Total time was %d uSec.\n", total_usecs);*/
3553: /*------ End -----------*/
1.12 lievre 3554:
1.2 lievre 3555:
3556: end:
1.22 brouard 3557: /* chdir(pathcd);*/
3558: /*system("wgnuplot graph.plt");*/
3559: /*system("../gp37mgw/wgnuplot graph.plt");*/
3560: /*system("cd ../gp37mgw");*/
3561: /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
3562: strcpy(plotcmd,GNUPLOTPROGRAM);
3563: strcat(plotcmd," ");
3564: strcat(plotcmd,optionfilegnuplot);
3565: system(plotcmd);
1.2 lievre 3566:
1.41.2.1 brouard 3567: /*#ifdef windows*/
1.2 lievre 3568: while (z[0] != 'q') {
1.35 lievre 3569: /* chdir(path); */
3570: printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
1.2 lievre 3571: scanf("%s",z);
3572: if (z[0] == 'c') system("./imach");
1.35 lievre 3573: else if (z[0] == 'e') system(optionfilehtm);
3574: else if (z[0] == 'g') system(plotcmd);
1.2 lievre 3575: else if (z[0] == 'q') exit(0);
3576: }
1.41.2.1 brouard 3577: /*#endif */
1.2 lievre 3578: }
3579:
3580:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>