Annotation of imach/src/imach.c, revision 1.99

1.99    ! brouard     1: /* $Id: imach.c,v 1.98 2004/05/16 15:05:56 brouard Exp $
1.83      lievre      2:   $State: Exp $
                      3:   $Log: imach.c,v $
1.99    ! brouard     4:   Revision 1.98  2004/05/16 15:05:56  brouard
        !             5:   New version 0.97 . First attempt to estimate force of mortality
        !             6:   directly from the data i.e. without the need of knowing the health
        !             7:   state at each age, but using a Gompertz model: log u =a + b*age .
        !             8:   This is the basic analysis of mortality and should be done before any
        !             9:   other analysis, in order to test if the mortality estimated from the
        !            10:   cross-longitudinal survey is different from the mortality estimated
        !            11:   from other sources like vital statistic data.
        !            12: 
        !            13:   The same imach parameter file can be used but the option for mle should be -3.
        !            14: 
        !            15:   Agnès, who wrote this part of the code, tried to keep most of the
        !            16:   former routines in order to include the new code within the former code.
        !            17: 
        !            18:   The output is very simple: only an estimate of the intercept and of
        !            19:   the slope with 95% confident intervals.
        !            20: 
        !            21:   Current limitations:
        !            22:   A) Even if you enter covariates, i.e. with the
        !            23:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
        !            24:   B) There is no computation of Life Expectancy nor Life Table.
        !            25: 
1.98      brouard    26:   Revision 1.97  2004/02/20 13:25:42  lievre
                     27:   Version 0.96d. Population forecasting command line is (temporarily)
                     28:   suppressed.
                     29: 
1.97      lievre     30:   Revision 1.96  2003/07/15 15:38:55  brouard
                     31:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                     32:   rewritten within the same printf. Workaround: many printfs.
                     33: 
1.96      brouard    34:   Revision 1.95  2003/07/08 07:54:34  brouard
                     35:   * imach.c (Repository):
                     36:   (Repository): Using imachwizard code to output a more meaningful covariance
                     37:   matrix (cov(a12,c31) instead of numbers.
                     38: 
1.95      brouard    39:   Revision 1.94  2003/06/27 13:00:02  brouard
                     40:   Just cleaning
                     41: 
1.94      brouard    42:   Revision 1.93  2003/06/25 16:33:55  brouard
                     43:   (Module): On windows (cygwin) function asctime_r doesn't
                     44:   exist so I changed back to asctime which exists.
                     45:   (Module): Version 0.96b
                     46: 
1.93      brouard    47:   Revision 1.92  2003/06/25 16:30:45  brouard
                     48:   (Module): On windows (cygwin) function asctime_r doesn't
                     49:   exist so I changed back to asctime which exists.
                     50: 
1.92      brouard    51:   Revision 1.91  2003/06/25 15:30:29  brouard
                     52:   * imach.c (Repository): Duplicated warning errors corrected.
                     53:   (Repository): Elapsed time after each iteration is now output. It
                     54:   helps to forecast when convergence will be reached. Elapsed time
                     55:   is stamped in powell.  We created a new html file for the graphs
                     56:   concerning matrix of covariance. It has extension -cov.htm.
                     57: 
1.91      brouard    58:   Revision 1.90  2003/06/24 12:34:15  brouard
                     59:   (Module): Some bugs corrected for windows. Also, when
                     60:   mle=-1 a template is output in file "or"mypar.txt with the design
                     61:   of the covariance matrix to be input.
                     62: 
1.90      brouard    63:   Revision 1.89  2003/06/24 12:30:52  brouard
                     64:   (Module): Some bugs corrected for windows. Also, when
                     65:   mle=-1 a template is output in file "or"mypar.txt with the design
                     66:   of the covariance matrix to be input.
                     67: 
1.89      brouard    68:   Revision 1.88  2003/06/23 17:54:56  brouard
                     69:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                     70: 
1.88      brouard    71:   Revision 1.87  2003/06/18 12:26:01  brouard
                     72:   Version 0.96
                     73: 
1.87      brouard    74:   Revision 1.86  2003/06/17 20:04:08  brouard
                     75:   (Module): Change position of html and gnuplot routines and added
                     76:   routine fileappend.
                     77: 
1.86      brouard    78:   Revision 1.85  2003/06/17 13:12:43  brouard
                     79:   * imach.c (Repository): Check when date of death was earlier that
                     80:   current date of interview. It may happen when the death was just
                     81:   prior to the death. In this case, dh was negative and likelihood
                     82:   was wrong (infinity). We still send an "Error" but patch by
                     83:   assuming that the date of death was just one stepm after the
                     84:   interview.
                     85:   (Repository): Because some people have very long ID (first column)
                     86:   we changed int to long in num[] and we added a new lvector for
                     87:   memory allocation. But we also truncated to 8 characters (left
                     88:   truncation)
                     89:   (Repository): No more line truncation errors.
                     90: 
1.85      brouard    91:   Revision 1.84  2003/06/13 21:44:43  brouard
                     92:   * imach.c (Repository): Replace "freqsummary" at a correct
                     93:   place. It differs from routine "prevalence" which may be called
                     94:   many times. Probs is memory consuming and must be used with
                     95:   parcimony.
1.86      brouard    96:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
1.85      brouard    97: 
1.84      brouard    98:   Revision 1.83  2003/06/10 13:39:11  lievre
                     99:   *** empty log message ***
                    100: 
1.83      lievre    101:   Revision 1.82  2003/06/05 15:57:20  brouard
                    102:   Add log in  imach.c and  fullversion number is now printed.
                    103: 
1.82      brouard   104: */
                    105: /*
1.53      brouard   106:    Interpolated Markov Chain
                    107: 
                    108:   Short summary of the programme:
                    109:   
                    110:   This program computes Healthy Life Expectancies from
                    111:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
                    112:   first survey ("cross") where individuals from different ages are
                    113:   interviewed on their health status or degree of disability (in the
                    114:   case of a health survey which is our main interest) -2- at least a
                    115:   second wave of interviews ("longitudinal") which measure each change
                    116:   (if any) in individual health status.  Health expectancies are
                    117:   computed from the time spent in each health state according to a
                    118:   model. More health states you consider, more time is necessary to reach the
                    119:   Maximum Likelihood of the parameters involved in the model.  The
                    120:   simplest model is the multinomial logistic model where pij is the
                    121:   probability to be observed in state j at the second wave
                    122:   conditional to be observed in state i at the first wave. Therefore
                    123:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
                    124:   'age' is age and 'sex' is a covariate. If you want to have a more
                    125:   complex model than "constant and age", you should modify the program
                    126:   where the markup *Covariates have to be included here again* invites
                    127:   you to do it.  More covariates you add, slower the
                    128:   convergence.
                    129: 
                    130:   The advantage of this computer programme, compared to a simple
                    131:   multinomial logistic model, is clear when the delay between waves is not
                    132:   identical for each individual. Also, if a individual missed an
                    133:   intermediate interview, the information is lost, but taken into
                    134:   account using an interpolation or extrapolation.  
                    135: 
                    136:   hPijx is the probability to be observed in state i at age x+h
                    137:   conditional to the observed state i at age x. The delay 'h' can be
                    138:   split into an exact number (nh*stepm) of unobserved intermediate
1.66      brouard   139:   states. This elementary transition (by month, quarter,
                    140:   semester or year) is modelled as a multinomial logistic.  The hPx
1.53      brouard   141:   matrix is simply the matrix product of nh*stepm elementary matrices
                    142:   and the contribution of each individual to the likelihood is simply
                    143:   hPijx.
                    144: 
                    145:   Also this programme outputs the covariance matrix of the parameters but also
1.54      brouard   146:   of the life expectancies. It also computes the stable prevalence. 
1.53      brouard   147:   
                    148:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    149:            Institut national d'études démographiques, Paris.
                    150:   This software have been partly granted by Euro-REVES, a concerted action
                    151:   from the European Union.
                    152:   It is copyrighted identically to a GNU software product, ie programme and
                    153:   software can be distributed freely for non commercial use. Latest version
                    154:   can be accessed at http://euroreves.ined.fr/imach .
1.74      brouard   155: 
                    156:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    157:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    158:   
1.53      brouard   159:   **********************************************************************/
1.74      brouard   160: /*
                    161:   main
                    162:   read parameterfile
                    163:   read datafile
                    164:   concatwav
1.84      brouard   165:   freqsummary
1.74      brouard   166:   if (mle >= 1)
                    167:     mlikeli
                    168:   print results files
                    169:   if mle==1 
                    170:      computes hessian
                    171:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    172:       begin-prev-date,...
                    173:   open gnuplot file
                    174:   open html file
                    175:   stable prevalence
                    176:    for age prevalim()
                    177:   h Pij x
                    178:   variance of p varprob
                    179:   forecasting if prevfcast==1 prevforecast call prevalence()
                    180:   health expectancies
                    181:   Variance-covariance of DFLE
                    182:   prevalence()
                    183:    movingaverage()
                    184:   varevsij() 
                    185:   if popbased==1 varevsij(,popbased)
                    186:   total life expectancies
                    187:   Variance of stable prevalence
                    188:  end
                    189: */
                    190: 
                    191: 
                    192: 
1.53      brouard   193:  
                    194: #include <math.h>
                    195: #include <stdio.h>
                    196: #include <stdlib.h>
                    197: #include <unistd.h>
                    198: 
1.99    ! brouard   199: /* #include <sys/time.h> */
1.86      brouard   200: #include <time.h>
                    201: #include "timeval.h"
                    202: 
1.95      brouard   203: /* #include <libintl.h> */
                    204: /* #define _(String) gettext (String) */
                    205: 
1.53      brouard   206: #define MAXLINE 256
                    207: #define GNUPLOTPROGRAM "gnuplot"
                    208: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.85      brouard   209: #define FILENAMELENGTH 132
1.53      brouard   210: /*#define DEBUG*/
1.85      brouard   211: /*#define windows*/
1.53      brouard   212: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    213: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    214: 
                    215: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
                    216: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
                    217: 
                    218: #define NINTERVMAX 8
                    219: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
                    220: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
                    221: #define NCOVMAX 8 /* Maximum number of covariates */
                    222: #define MAXN 20000
                    223: #define YEARM 12. /* Number of months per year */
                    224: #define AGESUP 130
                    225: #define AGEBASE 40
1.98      brouard   226: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
1.85      brouard   227: #ifdef unix
                    228: #define DIRSEPARATOR '/'
                    229: #define ODIRSEPARATOR '\\'
                    230: #else
1.53      brouard   231: #define DIRSEPARATOR '\\'
                    232: #define ODIRSEPARATOR '/'
                    233: #endif
                    234: 
1.99    ! brouard   235: /* $Id: imach.c,v 1.98 2004/05/16 15:05:56 brouard Exp $ */
1.81      brouard   236: /* $State: Exp $ */
1.80      brouard   237: 
1.99    ! brouard   238: char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
        !           239: char fullversion[]="$Revision: 1.98 $ $Date: 2004/05/16 15:05:56 $"; 
1.91      brouard   240: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.53      brouard   241: int nvar;
                    242: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
                    243: int npar=NPARMAX;
                    244: int nlstate=2; /* Number of live states */
                    245: int ndeath=1; /* Number of dead states */
                    246: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
                    247: int popbased=0;
                    248: 
                    249: int *wav; /* Number of waves for this individuual 0 is possible */
                    250: int maxwav; /* Maxim number of waves */
                    251: int jmin, jmax; /* min, max spacing between 2 waves */
1.87      brouard   252: int gipmx, gsw; /* Global variables on the number of contributions 
                    253:                   to the likelihood and the sum of weights (done by funcone)*/
1.53      brouard   254: int mle, weightopt;
                    255: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    256: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
1.59      brouard   257: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    258:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.53      brouard   259: double jmean; /* Mean space between 2 waves */
                    260: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    261: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
                    262: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.76      brouard   263: FILE *ficlog, *ficrespow;
1.85      brouard   264: int globpr; /* Global variable for printing or not */
                    265: double fretone; /* Only one call to likelihood */
                    266: long ipmx; /* Number of contributions */
                    267: double sw; /* Sum of weights */
1.98      brouard   268: char filerespow[FILENAMELENGTH];
1.85      brouard   269: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                    270: FILE *ficresilk;
1.53      brouard   271: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                    272: FILE *ficresprobmorprev;
1.91      brouard   273: FILE *fichtm, *fichtmcov; /* Html File */
1.53      brouard   274: FILE *ficreseij;
                    275: char filerese[FILENAMELENGTH];
                    276: FILE  *ficresvij;
                    277: char fileresv[FILENAMELENGTH];
                    278: FILE  *ficresvpl;
                    279: char fileresvpl[FILENAMELENGTH];
                    280: char title[MAXLINE];
                    281: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
                    282: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
1.96      brouard   283: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
1.88      brouard   284: char command[FILENAMELENGTH];
                    285: int  outcmd=0;
1.53      brouard   286: 
                    287: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.94      brouard   288: 
1.53      brouard   289: char filelog[FILENAMELENGTH]; /* Log file */
                    290: char filerest[FILENAMELENGTH];
                    291: char fileregp[FILENAMELENGTH];
                    292: char popfile[FILENAMELENGTH];
                    293: 
1.91      brouard   294: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                    295: 
                    296: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
                    297: struct timezone tzp;
                    298: extern int gettimeofday();
                    299: struct tm tmg, tm, tmf, *gmtime(), *localtime();
                    300: long time_value;
                    301: extern long time();
                    302: char strcurr[80], strfor[80];
1.53      brouard   303: 
                    304: #define NR_END 1
                    305: #define FREE_ARG char*
                    306: #define FTOL 1.0e-10
                    307: 
                    308: #define NRANSI 
                    309: #define ITMAX 200 
                    310: 
                    311: #define TOL 2.0e-4 
                    312: 
                    313: #define CGOLD 0.3819660 
                    314: #define ZEPS 1.0e-10 
                    315: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    316: 
                    317: #define GOLD 1.618034 
                    318: #define GLIMIT 100.0 
                    319: #define TINY 1.0e-20 
                    320: 
                    321: static double maxarg1,maxarg2;
                    322: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                    323: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                    324:   
                    325: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                    326: #define rint(a) floor(a+0.5)
                    327: 
                    328: static double sqrarg;
                    329: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                    330: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
1.98      brouard   331: int agegomp= AGEGOMP;
1.53      brouard   332: 
                    333: int imx; 
1.98      brouard   334: int stepm=1;
1.53      brouard   335: /* Stepm, step in month: minimum step interpolation*/
                    336: 
                    337: int estepm;
                    338: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                    339: 
                    340: int m,nb;
1.85      brouard   341: long *num;
1.98      brouard   342: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
1.53      brouard   343: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.55      lievre    344: double **pmmij, ***probs;
1.98      brouard   345: double *ageexmed,*agecens;
1.53      brouard   346: double dateintmean=0;
                    347: 
                    348: double *weight;
                    349: int **s; /* Status */
                    350: double *agedc, **covar, idx;
                    351: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
                    352: 
                    353: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
                    354: double ftolhess; /* Tolerance for computing hessian */
                    355: 
                    356: /**************** split *************************/
                    357: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                    358: {
1.99    ! brouard   359:   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
        !           360:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
        !           361:   */ 
1.59      brouard   362:   char *ss;                            /* pointer */
                    363:   int  l1, l2;                         /* length counters */
1.53      brouard   364: 
1.59      brouard   365:   l1 = strlen(path );                  /* length of path */
                    366:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                    367:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                    368:   if ( ss == NULL ) {                  /* no directory, so use current */
                    369:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                    370:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
1.74      brouard   371:     /* get current working directory */
                    372:     /*    extern  char* getcwd ( char *buf , int len);*/
1.59      brouard   373:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    374:       return( GLOCK_ERROR_GETCWD );
                    375:     }
                    376:     strcpy( name, path );              /* we've got it */
                    377:   } else {                             /* strip direcotry from path */
                    378:     ss++;                              /* after this, the filename */
                    379:     l2 = strlen( ss );                 /* length of filename */
                    380:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                    381:     strcpy( name, ss );                /* save file name */
                    382:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
                    383:     dirc[l1-l2] = 0;                   /* add zero */
                    384:   }
                    385:   l1 = strlen( dirc );                 /* length of directory */
1.85      brouard   386:   /*#ifdef windows
1.59      brouard   387:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
1.53      brouard   388: #else
1.59      brouard   389:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
1.53      brouard   390: #endif
1.85      brouard   391:   */
1.59      brouard   392:   ss = strrchr( name, '.' );           /* find last / */
1.99    ! brouard   393:   if (ss >0){
        !           394:     ss++;
        !           395:     strcpy(ext,ss);                    /* save extension */
        !           396:     l1= strlen( name);
        !           397:     l2= strlen(ss)+1;
        !           398:     strncpy( finame, name, l1-l2);
        !           399:     finame[l1-l2]= 0;
        !           400:   }
1.59      brouard   401:   return( 0 );                         /* we're done */
1.53      brouard   402: }
                    403: 
                    404: 
                    405: /******************************************/
                    406: 
1.89      brouard   407: void replace_back_to_slash(char *s, char*t)
1.53      brouard   408: {
                    409:   int i;
1.89      brouard   410:   int lg=0;
1.53      brouard   411:   i=0;
                    412:   lg=strlen(t);
                    413:   for(i=0; i<= lg; i++) {
                    414:     (s[i] = t[i]);
                    415:     if (t[i]== '\\') s[i]='/';
                    416:   }
                    417: }
                    418: 
                    419: int nbocc(char *s, char occ)
                    420: {
                    421:   int i,j=0;
                    422:   int lg=20;
                    423:   i=0;
                    424:   lg=strlen(s);
                    425:   for(i=0; i<= lg; i++) {
                    426:   if  (s[i] == occ ) j++;
                    427:   }
                    428:   return j;
                    429: }
                    430: 
                    431: void cutv(char *u,char *v, char*t, char occ)
                    432: {
                    433:   /* cuts string t into u and v where u is ended by char occ excluding it
                    434:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
                    435:      gives u="abcedf" and v="ghi2j" */
                    436:   int i,lg,j,p=0;
                    437:   i=0;
                    438:   for(j=0; j<=strlen(t)-1; j++) {
                    439:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
                    440:   }
                    441: 
                    442:   lg=strlen(t);
                    443:   for(j=0; j<p; j++) {
                    444:     (u[j] = t[j]);
                    445:   }
                    446:      u[p]='\0';
                    447: 
                    448:    for(j=0; j<= lg; j++) {
                    449:     if (j>=(p+1))(v[j-p-1] = t[j]);
                    450:   }
                    451: }
                    452: 
                    453: /********************** nrerror ********************/
                    454: 
                    455: void nrerror(char error_text[])
                    456: {
                    457:   fprintf(stderr,"ERREUR ...\n");
                    458:   fprintf(stderr,"%s\n",error_text);
1.59      brouard   459:   exit(EXIT_FAILURE);
1.53      brouard   460: }
                    461: /*********************** vector *******************/
                    462: double *vector(int nl, int nh)
                    463: {
                    464:   double *v;
                    465:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                    466:   if (!v) nrerror("allocation failure in vector");
                    467:   return v-nl+NR_END;
                    468: }
                    469: 
                    470: /************************ free vector ******************/
                    471: void free_vector(double*v, int nl, int nh)
                    472: {
                    473:   free((FREE_ARG)(v+nl-NR_END));
                    474: }
                    475: 
                    476: /************************ivector *******************************/
1.85      brouard   477: int *ivector(long nl,long nh)
1.76      brouard   478: {
1.85      brouard   479:   int *v;
                    480:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                    481:   if (!v) nrerror("allocation failure in ivector");
1.76      brouard   482:   return v-nl+NR_END;
                    483: }
                    484: 
                    485: /******************free ivector **************************/
1.85      brouard   486: void free_ivector(int *v, long nl, long nh)
1.76      brouard   487: {
                    488:   free((FREE_ARG)(v+nl-NR_END));
                    489: }
                    490: 
1.85      brouard   491: /************************lvector *******************************/
                    492: long *lvector(long nl,long nh)
1.53      brouard   493: {
1.85      brouard   494:   long *v;
                    495:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
1.53      brouard   496:   if (!v) nrerror("allocation failure in ivector");
                    497:   return v-nl+NR_END;
                    498: }
                    499: 
1.85      brouard   500: /******************free lvector **************************/
                    501: void free_lvector(long *v, long nl, long nh)
1.53      brouard   502: {
                    503:   free((FREE_ARG)(v+nl-NR_END));
                    504: }
                    505: 
                    506: /******************* imatrix *******************************/
                    507: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                    508:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                    509: { 
                    510:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                    511:   int **m; 
                    512:   
                    513:   /* allocate pointers to rows */ 
                    514:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                    515:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                    516:   m += NR_END; 
                    517:   m -= nrl; 
                    518:   
                    519:   
                    520:   /* allocate rows and set pointers to them */ 
                    521:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                    522:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                    523:   m[nrl] += NR_END; 
                    524:   m[nrl] -= ncl; 
                    525:   
                    526:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                    527:   
                    528:   /* return pointer to array of pointers to rows */ 
                    529:   return m; 
                    530: } 
                    531: 
                    532: /****************** free_imatrix *************************/
                    533: void free_imatrix(m,nrl,nrh,ncl,nch)
                    534:       int **m;
                    535:       long nch,ncl,nrh,nrl; 
                    536:      /* free an int matrix allocated by imatrix() */ 
                    537: { 
                    538:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                    539:   free((FREE_ARG) (m+nrl-NR_END)); 
                    540: } 
                    541: 
                    542: /******************* matrix *******************************/
                    543: double **matrix(long nrl, long nrh, long ncl, long nch)
                    544: {
                    545:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                    546:   double **m;
                    547: 
                    548:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    549:   if (!m) nrerror("allocation failure 1 in matrix()");
                    550:   m += NR_END;
                    551:   m -= nrl;
                    552: 
                    553:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    554:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    555:   m[nrl] += NR_END;
                    556:   m[nrl] -= ncl;
                    557: 
                    558:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    559:   return m;
1.85      brouard   560:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
1.74      brouard   561:    */
1.53      brouard   562: }
                    563: 
                    564: /*************************free matrix ************************/
                    565: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                    566: {
                    567:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    568:   free((FREE_ARG)(m+nrl-NR_END));
                    569: }
                    570: 
                    571: /******************* ma3x *******************************/
                    572: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                    573: {
                    574:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                    575:   double ***m;
                    576: 
                    577:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    578:   if (!m) nrerror("allocation failure 1 in matrix()");
                    579:   m += NR_END;
                    580:   m -= nrl;
                    581: 
                    582:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    583:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    584:   m[nrl] += NR_END;
                    585:   m[nrl] -= ncl;
                    586: 
                    587:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    588: 
                    589:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                    590:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                    591:   m[nrl][ncl] += NR_END;
                    592:   m[nrl][ncl] -= nll;
                    593:   for (j=ncl+1; j<=nch; j++) 
                    594:     m[nrl][j]=m[nrl][j-1]+nlay;
                    595:   
                    596:   for (i=nrl+1; i<=nrh; i++) {
                    597:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                    598:     for (j=ncl+1; j<=nch; j++) 
                    599:       m[i][j]=m[i][j-1]+nlay;
                    600:   }
1.74      brouard   601:   return m; 
                    602:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                    603:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                    604:   */
1.53      brouard   605: }
                    606: 
                    607: /*************************free ma3x ************************/
                    608: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                    609: {
                    610:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                    611:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    612:   free((FREE_ARG)(m+nrl-NR_END));
                    613: }
                    614: 
1.94      brouard   615: /*************** function subdirf ***********/
                    616: char *subdirf(char fileres[])
                    617: {
                    618:   /* Caution optionfilefiname is hidden */
                    619:   strcpy(tmpout,optionfilefiname);
                    620:   strcat(tmpout,"/"); /* Add to the right */
                    621:   strcat(tmpout,fileres);
                    622:   return tmpout;
                    623: }
                    624: 
                    625: /*************** function subdirf2 ***********/
                    626: char *subdirf2(char fileres[], char *preop)
                    627: {
                    628:   
                    629:   /* Caution optionfilefiname is hidden */
                    630:   strcpy(tmpout,optionfilefiname);
                    631:   strcat(tmpout,"/");
                    632:   strcat(tmpout,preop);
                    633:   strcat(tmpout,fileres);
                    634:   return tmpout;
                    635: }
                    636: 
                    637: /*************** function subdirf3 ***********/
                    638: char *subdirf3(char fileres[], char *preop, char *preop2)
                    639: {
                    640:   
                    641:   /* Caution optionfilefiname is hidden */
                    642:   strcpy(tmpout,optionfilefiname);
                    643:   strcat(tmpout,"/");
                    644:   strcat(tmpout,preop);
                    645:   strcat(tmpout,preop2);
                    646:   strcat(tmpout,fileres);
                    647:   return tmpout;
                    648: }
                    649: 
1.53      brouard   650: /***************** f1dim *************************/
                    651: extern int ncom; 
                    652: extern double *pcom,*xicom;
                    653: extern double (*nrfunc)(double []); 
                    654:  
                    655: double f1dim(double x) 
                    656: { 
                    657:   int j; 
                    658:   double f;
                    659:   double *xt; 
                    660:  
                    661:   xt=vector(1,ncom); 
                    662:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                    663:   f=(*nrfunc)(xt); 
                    664:   free_vector(xt,1,ncom); 
                    665:   return f; 
                    666: } 
                    667: 
                    668: /*****************brent *************************/
                    669: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
                    670: { 
                    671:   int iter; 
                    672:   double a,b,d,etemp;
                    673:   double fu,fv,fw,fx;
                    674:   double ftemp;
                    675:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                    676:   double e=0.0; 
                    677:  
                    678:   a=(ax < cx ? ax : cx); 
                    679:   b=(ax > cx ? ax : cx); 
                    680:   x=w=v=bx; 
                    681:   fw=fv=fx=(*f)(x); 
                    682:   for (iter=1;iter<=ITMAX;iter++) { 
                    683:     xm=0.5*(a+b); 
                    684:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                    685:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                    686:     printf(".");fflush(stdout);
                    687:     fprintf(ficlog,".");fflush(ficlog);
                    688: #ifdef DEBUG
                    689:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    690:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    691:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                    692: #endif
                    693:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                    694:       *xmin=x; 
                    695:       return fx; 
                    696:     } 
                    697:     ftemp=fu;
                    698:     if (fabs(e) > tol1) { 
                    699:       r=(x-w)*(fx-fv); 
                    700:       q=(x-v)*(fx-fw); 
                    701:       p=(x-v)*q-(x-w)*r; 
                    702:       q=2.0*(q-r); 
                    703:       if (q > 0.0) p = -p; 
                    704:       q=fabs(q); 
                    705:       etemp=e; 
                    706:       e=d; 
                    707:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                    708:        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    709:       else { 
                    710:        d=p/q; 
                    711:        u=x+d; 
                    712:        if (u-a < tol2 || b-u < tol2) 
                    713:          d=SIGN(tol1,xm-x); 
                    714:       } 
                    715:     } else { 
                    716:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    717:     } 
                    718:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                    719:     fu=(*f)(u); 
                    720:     if (fu <= fx) { 
                    721:       if (u >= x) a=x; else b=x; 
                    722:       SHFT(v,w,x,u) 
                    723:        SHFT(fv,fw,fx,fu) 
                    724:        } else { 
                    725:          if (u < x) a=u; else b=u; 
                    726:          if (fu <= fw || w == x) { 
                    727:            v=w; 
                    728:            w=u; 
                    729:            fv=fw; 
                    730:            fw=fu; 
                    731:          } else if (fu <= fv || v == x || v == w) { 
                    732:            v=u; 
                    733:            fv=fu; 
                    734:          } 
                    735:        } 
                    736:   } 
                    737:   nrerror("Too many iterations in brent"); 
                    738:   *xmin=x; 
                    739:   return fx; 
                    740: } 
                    741: 
                    742: /****************** mnbrak ***********************/
                    743: 
                    744: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    745:            double (*func)(double)) 
                    746: { 
                    747:   double ulim,u,r,q, dum;
                    748:   double fu; 
                    749:  
                    750:   *fa=(*func)(*ax); 
                    751:   *fb=(*func)(*bx); 
                    752:   if (*fb > *fa) { 
                    753:     SHFT(dum,*ax,*bx,dum) 
                    754:       SHFT(dum,*fb,*fa,dum) 
                    755:       } 
                    756:   *cx=(*bx)+GOLD*(*bx-*ax); 
                    757:   *fc=(*func)(*cx); 
                    758:   while (*fb > *fc) { 
                    759:     r=(*bx-*ax)*(*fb-*fc); 
                    760:     q=(*bx-*cx)*(*fb-*fa); 
                    761:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                    762:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                    763:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
                    764:     if ((*bx-u)*(u-*cx) > 0.0) { 
                    765:       fu=(*func)(u); 
                    766:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
                    767:       fu=(*func)(u); 
                    768:       if (fu < *fc) { 
                    769:        SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    770:          SHFT(*fb,*fc,fu,(*func)(u)) 
                    771:          } 
                    772:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                    773:       u=ulim; 
                    774:       fu=(*func)(u); 
                    775:     } else { 
                    776:       u=(*cx)+GOLD*(*cx-*bx); 
                    777:       fu=(*func)(u); 
                    778:     } 
                    779:     SHFT(*ax,*bx,*cx,u) 
                    780:       SHFT(*fa,*fb,*fc,fu) 
                    781:       } 
                    782: } 
                    783: 
                    784: /*************** linmin ************************/
                    785: 
                    786: int ncom; 
                    787: double *pcom,*xicom;
                    788: double (*nrfunc)(double []); 
                    789:  
                    790: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                    791: { 
                    792:   double brent(double ax, double bx, double cx, 
                    793:               double (*f)(double), double tol, double *xmin); 
                    794:   double f1dim(double x); 
                    795:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    796:              double *fc, double (*func)(double)); 
                    797:   int j; 
                    798:   double xx,xmin,bx,ax; 
                    799:   double fx,fb,fa;
                    800:  
                    801:   ncom=n; 
                    802:   pcom=vector(1,n); 
                    803:   xicom=vector(1,n); 
                    804:   nrfunc=func; 
                    805:   for (j=1;j<=n;j++) { 
                    806:     pcom[j]=p[j]; 
                    807:     xicom[j]=xi[j]; 
                    808:   } 
                    809:   ax=0.0; 
                    810:   xx=1.0; 
                    811:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                    812:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
                    813: #ifdef DEBUG
                    814:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    815:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    816: #endif
                    817:   for (j=1;j<=n;j++) { 
                    818:     xi[j] *= xmin; 
                    819:     p[j] += xi[j]; 
                    820:   } 
                    821:   free_vector(xicom,1,n); 
                    822:   free_vector(pcom,1,n); 
                    823: } 
                    824: 
1.91      brouard   825: char *asc_diff_time(long time_sec, char ascdiff[])
                    826: {
                    827:   long sec_left, days, hours, minutes;
                    828:   days = (time_sec) / (60*60*24);
                    829:   sec_left = (time_sec) % (60*60*24);
                    830:   hours = (sec_left) / (60*60) ;
                    831:   sec_left = (sec_left) %(60*60);
                    832:   minutes = (sec_left) /60;
                    833:   sec_left = (sec_left) % (60);
                    834:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
                    835:   return ascdiff;
                    836: }
                    837: 
1.53      brouard   838: /*************** powell ************************/
                    839: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    840:            double (*func)(double [])) 
                    841: { 
                    842:   void linmin(double p[], double xi[], int n, double *fret, 
                    843:              double (*func)(double [])); 
                    844:   int i,ibig,j; 
                    845:   double del,t,*pt,*ptt,*xit;
                    846:   double fp,fptt;
                    847:   double *xits;
1.91      brouard   848:   int niterf, itmp;
                    849: 
1.53      brouard   850:   pt=vector(1,n); 
                    851:   ptt=vector(1,n); 
                    852:   xit=vector(1,n); 
                    853:   xits=vector(1,n); 
                    854:   *fret=(*func)(p); 
                    855:   for (j=1;j<=n;j++) pt[j]=p[j]; 
                    856:   for (*iter=1;;++(*iter)) { 
                    857:     fp=(*fret); 
                    858:     ibig=0; 
                    859:     del=0.0; 
1.91      brouard   860:     last_time=curr_time;
                    861:     (void) gettimeofday(&curr_time,&tzp);
                    862:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
1.98      brouard   863:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
1.91      brouard   864:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
1.98      brouard   865:     */
                    866:    for (i=1;i<=n;i++) {
1.53      brouard   867:       printf(" %d %.12f",i, p[i]);
1.76      brouard   868:       fprintf(ficlog," %d %.12lf",i, p[i]);
                    869:       fprintf(ficrespow," %.12lf", p[i]);
                    870:     }
1.53      brouard   871:     printf("\n");
                    872:     fprintf(ficlog,"\n");
1.91      brouard   873:     fprintf(ficrespow,"\n");fflush(ficrespow);
                    874:     if(*iter <=3){
                    875:       tm = *localtime(&curr_time.tv_sec);
1.92      brouard   876:       strcpy(strcurr,asctime(&tmf));
                    877: /*       asctime_r(&tm,strcurr); */
1.91      brouard   878:       forecast_time=curr_time;
                    879:       itmp = strlen(strcurr);
                    880:       if(strcurr[itmp-1]=='\n')
                    881:        strcurr[itmp-1]='\0';
                    882:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    883:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    884:       for(niterf=10;niterf<=30;niterf+=10){
                    885:        forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                    886:        tmf = *localtime(&forecast_time.tv_sec);
1.92      brouard   887: /*     asctime_r(&tmf,strfor); */
                    888:        strcpy(strfor,asctime(&tmf));
1.91      brouard   889:        itmp = strlen(strfor);
                    890:        if(strfor[itmp-1]=='\n')
                    891:        strfor[itmp-1]='\0';
                    892:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                    893:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                    894:       }
                    895:     }
1.53      brouard   896:     for (i=1;i<=n;i++) { 
                    897:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                    898:       fptt=(*fret); 
                    899: #ifdef DEBUG
                    900:       printf("fret=%lf \n",*fret);
                    901:       fprintf(ficlog,"fret=%lf \n",*fret);
                    902: #endif
                    903:       printf("%d",i);fflush(stdout);
                    904:       fprintf(ficlog,"%d",i);fflush(ficlog);
                    905:       linmin(p,xit,n,fret,func); 
                    906:       if (fabs(fptt-(*fret)) > del) { 
                    907:        del=fabs(fptt-(*fret)); 
                    908:        ibig=i; 
                    909:       } 
                    910: #ifdef DEBUG
                    911:       printf("%d %.12e",i,(*fret));
                    912:       fprintf(ficlog,"%d %.12e",i,(*fret));
                    913:       for (j=1;j<=n;j++) {
                    914:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                    915:        printf(" x(%d)=%.12e",j,xit[j]);
                    916:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                    917:       }
                    918:       for(j=1;j<=n;j++) {
                    919:        printf(" p=%.12e",p[j]);
                    920:        fprintf(ficlog," p=%.12e",p[j]);
                    921:       }
                    922:       printf("\n");
                    923:       fprintf(ficlog,"\n");
                    924: #endif
                    925:     } 
                    926:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                    927: #ifdef DEBUG
                    928:       int k[2],l;
                    929:       k[0]=1;
                    930:       k[1]=-1;
                    931:       printf("Max: %.12e",(*func)(p));
                    932:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                    933:       for (j=1;j<=n;j++) {
                    934:        printf(" %.12e",p[j]);
                    935:        fprintf(ficlog," %.12e",p[j]);
                    936:       }
                    937:       printf("\n");
                    938:       fprintf(ficlog,"\n");
                    939:       for(l=0;l<=1;l++) {
                    940:        for (j=1;j<=n;j++) {
                    941:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    942:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    943:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    944:        }
                    945:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    946:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    947:       }
                    948: #endif
                    949: 
                    950: 
                    951:       free_vector(xit,1,n); 
                    952:       free_vector(xits,1,n); 
                    953:       free_vector(ptt,1,n); 
                    954:       free_vector(pt,1,n); 
                    955:       return; 
                    956:     } 
                    957:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                    958:     for (j=1;j<=n;j++) { 
                    959:       ptt[j]=2.0*p[j]-pt[j]; 
                    960:       xit[j]=p[j]-pt[j]; 
                    961:       pt[j]=p[j]; 
                    962:     } 
                    963:     fptt=(*func)(ptt); 
                    964:     if (fptt < fp) { 
                    965:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                    966:       if (t < 0.0) { 
                    967:        linmin(p,xit,n,fret,func); 
                    968:        for (j=1;j<=n;j++) { 
                    969:          xi[j][ibig]=xi[j][n]; 
                    970:          xi[j][n]=xit[j]; 
                    971:        }
                    972: #ifdef DEBUG
                    973:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    974:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    975:        for(j=1;j<=n;j++){
                    976:          printf(" %.12e",xit[j]);
                    977:          fprintf(ficlog," %.12e",xit[j]);
                    978:        }
                    979:        printf("\n");
                    980:        fprintf(ficlog,"\n");
                    981: #endif
1.54      brouard   982:       }
1.53      brouard   983:     } 
                    984:   } 
                    985: } 
                    986: 
1.54      brouard   987: /**** Prevalence limit (stable prevalence)  ****************/
1.53      brouard   988: 
                    989: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                    990: {
                    991:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                    992:      matrix by transitions matrix until convergence is reached */
                    993: 
                    994:   int i, ii,j,k;
                    995:   double min, max, maxmin, maxmax,sumnew=0.;
                    996:   double **matprod2();
                    997:   double **out, cov[NCOVMAX], **pmij();
                    998:   double **newm;
                    999:   double agefin, delaymax=50 ; /* Max number of years to converge */
                   1000: 
                   1001:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   1002:     for (j=1;j<=nlstate+ndeath;j++){
                   1003:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1004:     }
                   1005: 
                   1006:    cov[1]=1.;
                   1007:  
                   1008:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1009:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   1010:     newm=savm;
                   1011:     /* Covariates have to be included here again */
                   1012:      cov[2]=agefin;
                   1013:   
                   1014:       for (k=1; k<=cptcovn;k++) {
                   1015:        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1016:        /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                   1017:       }
                   1018:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1019:       for (k=1; k<=cptcovprod;k++)
                   1020:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1021: 
                   1022:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   1023:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   1024:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   1025:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
                   1026: 
                   1027:     savm=oldm;
                   1028:     oldm=newm;
                   1029:     maxmax=0.;
                   1030:     for(j=1;j<=nlstate;j++){
                   1031:       min=1.;
                   1032:       max=0.;
                   1033:       for(i=1; i<=nlstate; i++) {
                   1034:        sumnew=0;
                   1035:        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   1036:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   1037:        max=FMAX(max,prlim[i][j]);
                   1038:        min=FMIN(min,prlim[i][j]);
                   1039:       }
                   1040:       maxmin=max-min;
                   1041:       maxmax=FMAX(maxmax,maxmin);
                   1042:     }
                   1043:     if(maxmax < ftolpl){
                   1044:       return prlim;
                   1045:     }
                   1046:   }
                   1047: }
                   1048: 
                   1049: /*************** transition probabilities ***************/ 
                   1050: 
                   1051: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   1052: {
                   1053:   double s1, s2;
                   1054:   /*double t34;*/
                   1055:   int i,j,j1, nc, ii, jj;
                   1056: 
                   1057:     for(i=1; i<= nlstate; i++){
1.99    ! brouard  1058:       for(j=1; j<i;j++){
        !          1059:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
        !          1060:          /*s2 += param[i][j][nc]*cov[nc];*/
        !          1061:          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        !          1062: /*      printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
        !          1063:        }
        !          1064:        ps[i][j]=s2;
        !          1065: /*     printf("s1=%.17e, s2=%.17e\n",s1,s2); */
        !          1066:       }
        !          1067:       for(j=i+1; j<=nlstate+ndeath;j++){
        !          1068:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
        !          1069:          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        !          1070: /*       printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
        !          1071:        }
        !          1072:        ps[i][j]=s2;
1.53      brouard  1073:       }
                   1074:     }
                   1075:     /*ps[3][2]=1;*/
1.99    ! brouard  1076:     
        !          1077:     for(i=1; i<= nlstate; i++){
        !          1078:       s1=0;
        !          1079:       for(j=1; j<i; j++)
        !          1080:        s1+=exp(ps[i][j]);
        !          1081:       for(j=i+1; j<=nlstate+ndeath; j++)
        !          1082:        s1+=exp(ps[i][j]);
        !          1083:       ps[i][i]=1./(s1+1.);
        !          1084:       for(j=1; j<i; j++)
        !          1085:        ps[i][j]= exp(ps[i][j])*ps[i][i];
        !          1086:       for(j=i+1; j<=nlstate+ndeath; j++)
        !          1087:        ps[i][j]= exp(ps[i][j])*ps[i][i];
        !          1088:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        !          1089:     } /* end i */
        !          1090:     
        !          1091:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
        !          1092:       for(jj=1; jj<= nlstate+ndeath; jj++){
        !          1093:        ps[ii][jj]=0;
        !          1094:        ps[ii][ii]=1;
        !          1095:       }
1.53      brouard  1096:     }
1.99    ! brouard  1097:     
1.53      brouard  1098: 
1.99    ! brouard  1099: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
        !          1100: /*      for(jj=1; jj<= nlstate+ndeath; jj++){ */
        !          1101: /*        printf("ddd %lf ",ps[ii][jj]); */
        !          1102: /*      } */
        !          1103: /*      printf("\n "); */
        !          1104: /*        } */
        !          1105: /*        printf("\n ");printf("%lf ",cov[2]); */
        !          1106:        /*
        !          1107:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
        !          1108:       goto end;*/
1.53      brouard  1109:     return ps;
                   1110: }
                   1111: 
                   1112: /**************** Product of 2 matrices ******************/
                   1113: 
                   1114: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                   1115: {
                   1116:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   1117:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   1118:   /* in, b, out are matrice of pointers which should have been initialized 
                   1119:      before: only the contents of out is modified. The function returns
                   1120:      a pointer to pointers identical to out */
                   1121:   long i, j, k;
                   1122:   for(i=nrl; i<= nrh; i++)
                   1123:     for(k=ncolol; k<=ncoloh; k++)
                   1124:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
                   1125:        out[i][k] +=in[i][j]*b[j][k];
                   1126: 
                   1127:   return out;
                   1128: }
                   1129: 
                   1130: 
                   1131: /************* Higher Matrix Product ***************/
                   1132: 
                   1133: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                   1134: {
1.66      brouard  1135:   /* Computes the transition matrix starting at age 'age' over 
                   1136:      'nhstepm*hstepm*stepm' months (i.e. until
                   1137:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   1138:      nhstepm*hstepm matrices. 
1.53      brouard  1139:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
1.66      brouard  1140:      (typically every 2 years instead of every month which is too big 
                   1141:      for the memory).
1.53      brouard  1142:      Model is determined by parameters x and covariates have to be 
                   1143:      included manually here. 
                   1144: 
                   1145:      */
                   1146: 
                   1147:   int i, j, d, h, k;
                   1148:   double **out, cov[NCOVMAX];
                   1149:   double **newm;
                   1150: 
                   1151:   /* Hstepm could be zero and should return the unit matrix */
                   1152:   for (i=1;i<=nlstate+ndeath;i++)
                   1153:     for (j=1;j<=nlstate+ndeath;j++){
                   1154:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   1155:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   1156:     }
                   1157:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1158:   for(h=1; h <=nhstepm; h++){
                   1159:     for(d=1; d <=hstepm; d++){
                   1160:       newm=savm;
                   1161:       /* Covariates have to be included here again */
                   1162:       cov[1]=1.;
                   1163:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                   1164:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1165:       for (k=1; k<=cptcovage;k++)
                   1166:        cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1167:       for (k=1; k<=cptcovprod;k++)
                   1168:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1169: 
                   1170: 
                   1171:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   1172:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                   1173:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   1174:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1175:       savm=oldm;
                   1176:       oldm=newm;
                   1177:     }
                   1178:     for(i=1; i<=nlstate+ndeath; i++)
                   1179:       for(j=1;j<=nlstate+ndeath;j++) {
                   1180:        po[i][j][h]=newm[i][j];
                   1181:        /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                   1182:         */
                   1183:       }
                   1184:   } /* end h */
                   1185:   return po;
                   1186: }
                   1187: 
                   1188: 
                   1189: /*************** log-likelihood *************/
                   1190: double func( double *x)
                   1191: {
                   1192:   int i, ii, j, k, mi, d, kk;
                   1193:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1194:   double **out;
                   1195:   double sw; /* Sum of weights */
                   1196:   double lli; /* Individual log likelihood */
1.59      brouard  1197:   int s1, s2;
1.68      lievre   1198:   double bbh, survp;
1.53      brouard  1199:   long ipmx;
                   1200:   /*extern weight */
                   1201:   /* We are differentiating ll according to initial status */
                   1202:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1203:   /*for(i=1;i<imx;i++) 
                   1204:     printf(" %d\n",s[4][i]);
                   1205:   */
                   1206:   cov[1]=1.;
                   1207: 
                   1208:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.61      brouard  1209: 
                   1210:   if(mle==1){
                   1211:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1212:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1213:       for(mi=1; mi<= wav[i]-1; mi++){
                   1214:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1215:          for (j=1;j<=nlstate+ndeath;j++){
                   1216:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1217:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1218:          }
                   1219:        for(d=0; d<dh[mi][i]; d++){
                   1220:          newm=savm;
                   1221:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1222:          for (kk=1; kk<=cptcovage;kk++) {
                   1223:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1224:          }
                   1225:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1226:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1227:          savm=oldm;
                   1228:          oldm=newm;
                   1229:        } /* end mult */
1.53      brouard  1230:       
1.61      brouard  1231:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   1232:        /* But now since version 0.9 we anticipate for bias and large stepm.
                   1233:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   1234:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   1235:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   1236:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   1237:         * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
                   1238:         * probability in order to take into account the bias as a fraction of the way
                   1239:         * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                   1240:         * -stepm/2 to stepm/2 .
                   1241:         * For stepm=1 the results are the same as for previous versions of Imach.
                   1242:         * For stepm > 1 the results are less biased than in previous versions. 
                   1243:         */
                   1244:        s1=s[mw[mi][i]][i];
                   1245:        s2=s[mw[mi+1][i]][i];
1.64      lievre   1246:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1247:        /* bias is positive if real duration
                   1248:         * is higher than the multiple of stepm and negative otherwise.
                   1249:         */
                   1250:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
1.71      brouard  1251:        if( s2 > nlstate){ 
                   1252:          /* i.e. if s2 is a death state and if the date of death is known then the contribution
                   1253:             to the likelihood is the probability to die between last step unit time and current 
                   1254:             step unit time, which is also the differences between probability to die before dh 
                   1255:             and probability to die before dh-stepm . 
                   1256:             In version up to 0.92 likelihood was computed
                   1257:        as if date of death was unknown. Death was treated as any other
                   1258:        health state: the date of the interview describes the actual state
                   1259:        and not the date of a change in health state. The former idea was
                   1260:        to consider that at each interview the state was recorded
                   1261:        (healthy, disable or death) and IMaCh was corrected; but when we
                   1262:        introduced the exact date of death then we should have modified
                   1263:        the contribution of an exact death to the likelihood. This new
                   1264:        contribution is smaller and very dependent of the step unit
                   1265:        stepm. It is no more the probability to die between last interview
                   1266:        and month of death but the probability to survive from last
                   1267:        interview up to one month before death multiplied by the
                   1268:        probability to die within a month. Thanks to Chris
                   1269:        Jackson for correcting this bug.  Former versions increased
                   1270:        mortality artificially. The bad side is that we add another loop
                   1271:        which slows down the processing. The difference can be up to 10%
                   1272:        lower mortality.
                   1273:          */
                   1274:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1275:        }else{
                   1276:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1277:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   1278:        } 
1.64      lievre   1279:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   1280:        /*if(lli ==000.0)*/
                   1281:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
1.71      brouard  1282:        ipmx +=1;
1.64      lievre   1283:        sw += weight[i];
                   1284:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1285:       } /* end of wave */
                   1286:     } /* end of individual */
                   1287:   }  else if(mle==2){
                   1288:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1289:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1290:       for(mi=1; mi<= wav[i]-1; mi++){
                   1291:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1292:          for (j=1;j<=nlstate+ndeath;j++){
                   1293:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1294:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1295:          }
                   1296:        for(d=0; d<=dh[mi][i]; d++){
                   1297:          newm=savm;
                   1298:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1299:          for (kk=1; kk<=cptcovage;kk++) {
                   1300:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1301:          }
                   1302:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1303:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1304:          savm=oldm;
                   1305:          oldm=newm;
                   1306:        } /* end mult */
                   1307:       
                   1308:        s1=s[mw[mi][i]][i];
                   1309:        s2=s[mw[mi+1][i]][i];
                   1310:        bbh=(double)bh[mi][i]/(double)stepm; 
1.63      lievre   1311:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.64      lievre   1312:        ipmx +=1;
                   1313:        sw += weight[i];
                   1314:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1315:       } /* end of wave */
                   1316:     } /* end of individual */
                   1317:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   1318:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1319:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1320:       for(mi=1; mi<= wav[i]-1; mi++){
                   1321:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1322:          for (j=1;j<=nlstate+ndeath;j++){
                   1323:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1324:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1325:          }
                   1326:        for(d=0; d<dh[mi][i]; d++){
                   1327:          newm=savm;
                   1328:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1329:          for (kk=1; kk<=cptcovage;kk++) {
                   1330:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1331:          }
                   1332:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1333:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1334:          savm=oldm;
                   1335:          oldm=newm;
                   1336:        } /* end mult */
                   1337:       
                   1338:        s1=s[mw[mi][i]][i];
                   1339:        s2=s[mw[mi+1][i]][i];
                   1340:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1341:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.61      brouard  1342:        ipmx +=1;
                   1343:        sw += weight[i];
                   1344:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1345:       } /* end of wave */
                   1346:     } /* end of individual */
1.84      brouard  1347:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
1.61      brouard  1348:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1349:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1350:       for(mi=1; mi<= wav[i]-1; mi++){
                   1351:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1352:          for (j=1;j<=nlstate+ndeath;j++){
                   1353:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1354:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1355:          }
                   1356:        for(d=0; d<dh[mi][i]; d++){
                   1357:          newm=savm;
                   1358:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1359:          for (kk=1; kk<=cptcovage;kk++) {
                   1360:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1361:          }
                   1362:        
                   1363:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1364:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1365:          savm=oldm;
                   1366:          oldm=newm;
                   1367:        } /* end mult */
                   1368:       
1.84      brouard  1369:        s1=s[mw[mi][i]][i];
                   1370:        s2=s[mw[mi+1][i]][i];
                   1371:        if( s2 > nlstate){ 
                   1372:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1373:        }else{
                   1374:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1375:        }
                   1376:        ipmx +=1;
                   1377:        sw += weight[i];
                   1378:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.85      brouard  1379: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.84      brouard  1380:       } /* end of wave */
                   1381:     } /* end of individual */
                   1382:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   1383:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1384:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1385:       for(mi=1; mi<= wav[i]-1; mi++){
                   1386:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1387:          for (j=1;j<=nlstate+ndeath;j++){
                   1388:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1389:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1390:          }
                   1391:        for(d=0; d<dh[mi][i]; d++){
                   1392:          newm=savm;
                   1393:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1394:          for (kk=1; kk<=cptcovage;kk++) {
                   1395:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1396:          }
                   1397:        
                   1398:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1399:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1400:          savm=oldm;
                   1401:          oldm=newm;
                   1402:        } /* end mult */
                   1403:       
                   1404:        s1=s[mw[mi][i]][i];
                   1405:        s2=s[mw[mi+1][i]][i];
1.61      brouard  1406:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1407:        ipmx +=1;
                   1408:        sw += weight[i];
                   1409:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.84      brouard  1410:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
1.61      brouard  1411:       } /* end of wave */
                   1412:     } /* end of individual */
                   1413:   } /* End of if */
1.53      brouard  1414:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1415:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1416:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.85      brouard  1417:   return -l;
                   1418: }
                   1419: 
                   1420: /*************** log-likelihood *************/
                   1421: double funcone( double *x)
                   1422: {
1.87      brouard  1423:   /* Same as likeli but slower because of a lot of printf and if */
1.85      brouard  1424:   int i, ii, j, k, mi, d, kk;
                   1425:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1426:   double **out;
                   1427:   double lli; /* Individual log likelihood */
1.87      brouard  1428:   double llt;
1.85      brouard  1429:   int s1, s2;
                   1430:   double bbh, survp;
                   1431:   /*extern weight */
                   1432:   /* We are differentiating ll according to initial status */
                   1433:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1434:   /*for(i=1;i<imx;i++) 
                   1435:     printf(" %d\n",s[4][i]);
                   1436:   */
                   1437:   cov[1]=1.;
                   1438: 
                   1439:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   1440: 
                   1441:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1442:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1443:     for(mi=1; mi<= wav[i]-1; mi++){
                   1444:       for (ii=1;ii<=nlstate+ndeath;ii++)
                   1445:        for (j=1;j<=nlstate+ndeath;j++){
                   1446:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1447:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1448:        }
                   1449:       for(d=0; d<dh[mi][i]; d++){
                   1450:        newm=savm;
                   1451:        cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1452:        for (kk=1; kk<=cptcovage;kk++) {
                   1453:          cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1454:        }
                   1455:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1456:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1457:        savm=oldm;
                   1458:        oldm=newm;
                   1459:       } /* end mult */
                   1460:       
                   1461:       s1=s[mw[mi][i]][i];
                   1462:       s2=s[mw[mi+1][i]][i];
                   1463:       bbh=(double)bh[mi][i]/(double)stepm; 
                   1464:       /* bias is positive if real duration
                   1465:        * is higher than the multiple of stepm and negative otherwise.
                   1466:        */
                   1467:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   1468:        lli=log(out[s1][s2] - savm[s1][s2]);
                   1469:       } else if (mle==1){
                   1470:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1471:       } else if(mle==2){
                   1472:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   1473:       } else if(mle==3){  /* exponential inter-extrapolation */
                   1474:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   1475:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   1476:        lli=log(out[s1][s2]); /* Original formula */
                   1477:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                   1478:        lli=log(out[s1][s2]); /* Original formula */
                   1479:       } /* End of if */
                   1480:       ipmx +=1;
                   1481:       sw += weight[i];
                   1482:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1483: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   1484:       if(globpr){
1.88      brouard  1485:        fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
1.86      brouard  1486:  %10.6f %10.6f %10.6f ", \
                   1487:                num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   1488:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
1.87      brouard  1489:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   1490:          llt +=ll[k]*gipmx/gsw;
                   1491:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   1492:        }
                   1493:        fprintf(ficresilk," %10.6f\n", -llt);
1.85      brouard  1494:       }
                   1495:     } /* end of wave */
                   1496:   } /* end of individual */
                   1497:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1498:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1499:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.87      brouard  1500:   if(globpr==0){ /* First time we count the contributions and weights */
                   1501:     gipmx=ipmx;
                   1502:     gsw=sw;
                   1503:   }
1.53      brouard  1504:   return -l;
                   1505: }
                   1506: 
                   1507: 
1.94      brouard  1508: /*************** function likelione ***********/
1.87      brouard  1509: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
1.85      brouard  1510: {
1.87      brouard  1511:   /* This routine should help understanding what is done with 
                   1512:      the selection of individuals/waves and
1.85      brouard  1513:      to check the exact contribution to the likelihood.
                   1514:      Plotting could be done.
                   1515:    */
                   1516:   int k;
1.87      brouard  1517: 
1.88      brouard  1518:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.85      brouard  1519:     strcpy(fileresilk,"ilk"); 
                   1520:     strcat(fileresilk,fileres);
                   1521:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   1522:       printf("Problem with resultfile: %s\n", fileresilk);
                   1523:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   1524:     }
1.87      brouard  1525:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
1.88      brouard  1526:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
1.85      brouard  1527:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   1528:     for(k=1; k<=nlstate; k++) 
1.87      brouard  1529:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   1530:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
1.85      brouard  1531:   }
                   1532: 
                   1533:   *fretone=(*funcone)(p);
1.87      brouard  1534:   if(*globpri !=0){
1.85      brouard  1535:     fclose(ficresilk);
1.88      brouard  1536:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.87      brouard  1537:     fflush(fichtm); 
                   1538:   } 
1.85      brouard  1539:   return;
                   1540: }
                   1541: 
1.88      brouard  1542: 
1.53      brouard  1543: /*********** Maximum Likelihood Estimation ***************/
                   1544: 
                   1545: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   1546: {
                   1547:   int i,j, iter;
1.74      brouard  1548:   double **xi;
1.53      brouard  1549:   double fret;
1.85      brouard  1550:   double fretone; /* Only one call to likelihood */
1.98      brouard  1551:   /*  char filerespow[FILENAMELENGTH];*/
1.53      brouard  1552:   xi=matrix(1,npar,1,npar);
                   1553:   for (i=1;i<=npar;i++)
                   1554:     for (j=1;j<=npar;j++)
                   1555:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   1556:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.76      brouard  1557:   strcpy(filerespow,"pow"); 
                   1558:   strcat(filerespow,fileres);
                   1559:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   1560:     printf("Problem with resultfile: %s\n", filerespow);
                   1561:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   1562:   }
                   1563:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   1564:   for (i=1;i<=nlstate;i++)
                   1565:     for(j=1;j<=nlstate+ndeath;j++)
                   1566:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   1567:   fprintf(ficrespow,"\n");
1.85      brouard  1568: 
1.53      brouard  1569:   powell(p,xi,npar,ftol,&iter,&fret,func);
                   1570: 
1.76      brouard  1571:   fclose(ficrespow);
                   1572:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
1.65      lievre   1573:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
1.53      brouard  1574:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                   1575: 
                   1576: }
                   1577: 
                   1578: /**** Computes Hessian and covariance matrix ***/
                   1579: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   1580: {
                   1581:   double  **a,**y,*x,pd;
                   1582:   double **hess;
                   1583:   int i, j,jk;
                   1584:   int *indx;
                   1585: 
1.98      brouard  1586:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   1587:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
1.53      brouard  1588:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   1589:   void ludcmp(double **a, int npar, int *indx, double *d) ;
1.98      brouard  1590:   double gompertz(double p[]);
1.53      brouard  1591:   hess=matrix(1,npar,1,npar);
                   1592: 
                   1593:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   1594:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   1595:   for (i=1;i<=npar;i++){
                   1596:     printf("%d",i);fflush(stdout);
                   1597:     fprintf(ficlog,"%d",i);fflush(ficlog);
1.98      brouard  1598:    
                   1599:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   1600:     
                   1601:     /*  printf(" %f ",p[i]);
                   1602:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
1.53      brouard  1603:   }
                   1604:   
                   1605:   for (i=1;i<=npar;i++) {
                   1606:     for (j=1;j<=npar;j++)  {
                   1607:       if (j>i) { 
                   1608:        printf(".%d%d",i,j);fflush(stdout);
                   1609:        fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
1.98      brouard  1610:        hess[i][j]=hessij(p,delti,i,j,func,npar);
                   1611:        
1.53      brouard  1612:        hess[j][i]=hess[i][j];    
                   1613:        /*printf(" %lf ",hess[i][j]);*/
                   1614:       }
                   1615:     }
                   1616:   }
                   1617:   printf("\n");
                   1618:   fprintf(ficlog,"\n");
                   1619: 
                   1620:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1621:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1622:   
                   1623:   a=matrix(1,npar,1,npar);
                   1624:   y=matrix(1,npar,1,npar);
                   1625:   x=vector(1,npar);
                   1626:   indx=ivector(1,npar);
                   1627:   for (i=1;i<=npar;i++)
                   1628:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   1629:   ludcmp(a,npar,indx,&pd);
                   1630: 
                   1631:   for (j=1;j<=npar;j++) {
                   1632:     for (i=1;i<=npar;i++) x[i]=0;
                   1633:     x[j]=1;
                   1634:     lubksb(a,npar,indx,x);
                   1635:     for (i=1;i<=npar;i++){ 
                   1636:       matcov[i][j]=x[i];
                   1637:     }
                   1638:   }
                   1639: 
                   1640:   printf("\n#Hessian matrix#\n");
                   1641:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   1642:   for (i=1;i<=npar;i++) { 
                   1643:     for (j=1;j<=npar;j++) { 
                   1644:       printf("%.3e ",hess[i][j]);
                   1645:       fprintf(ficlog,"%.3e ",hess[i][j]);
                   1646:     }
                   1647:     printf("\n");
                   1648:     fprintf(ficlog,"\n");
                   1649:   }
                   1650: 
                   1651:   /* Recompute Inverse */
                   1652:   for (i=1;i<=npar;i++)
                   1653:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                   1654:   ludcmp(a,npar,indx,&pd);
                   1655: 
                   1656:   /*  printf("\n#Hessian matrix recomputed#\n");
                   1657: 
                   1658:   for (j=1;j<=npar;j++) {
                   1659:     for (i=1;i<=npar;i++) x[i]=0;
                   1660:     x[j]=1;
                   1661:     lubksb(a,npar,indx,x);
                   1662:     for (i=1;i<=npar;i++){ 
                   1663:       y[i][j]=x[i];
                   1664:       printf("%.3e ",y[i][j]);
                   1665:       fprintf(ficlog,"%.3e ",y[i][j]);
                   1666:     }
                   1667:     printf("\n");
                   1668:     fprintf(ficlog,"\n");
                   1669:   }
                   1670:   */
                   1671: 
                   1672:   free_matrix(a,1,npar,1,npar);
                   1673:   free_matrix(y,1,npar,1,npar);
                   1674:   free_vector(x,1,npar);
                   1675:   free_ivector(indx,1,npar);
                   1676:   free_matrix(hess,1,npar,1,npar);
                   1677: 
                   1678: 
                   1679: }
                   1680: 
                   1681: /*************** hessian matrix ****************/
1.98      brouard  1682: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.53      brouard  1683: {
                   1684:   int i;
                   1685:   int l=1, lmax=20;
                   1686:   double k1,k2;
                   1687:   double p2[NPARMAX+1];
                   1688:   double res;
1.98      brouard  1689:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1.53      brouard  1690:   double fx;
                   1691:   int k=0,kmax=10;
                   1692:   double l1;
                   1693: 
                   1694:   fx=func(x);
                   1695:   for (i=1;i<=npar;i++) p2[i]=x[i];
                   1696:   for(l=0 ; l <=lmax; l++){
                   1697:     l1=pow(10,l);
                   1698:     delts=delt;
                   1699:     for(k=1 ; k <kmax; k=k+1){
                   1700:       delt = delta*(l1*k);
                   1701:       p2[theta]=x[theta] +delt;
                   1702:       k1=func(p2)-fx;
                   1703:       p2[theta]=x[theta]-delt;
                   1704:       k2=func(p2)-fx;
                   1705:       /*res= (k1-2.0*fx+k2)/delt/delt; */
                   1706:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   1707:       
                   1708: #ifdef DEBUG
                   1709:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1710:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1711: #endif
                   1712:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   1713:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   1714:        k=kmax;
                   1715:       }
                   1716:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   1717:        k=kmax; l=lmax*10.;
                   1718:       }
                   1719:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   1720:        delts=delt;
                   1721:       }
                   1722:     }
                   1723:   }
                   1724:   delti[theta]=delts;
                   1725:   return res; 
                   1726:   
                   1727: }
                   1728: 
1.98      brouard  1729: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.53      brouard  1730: {
                   1731:   int i;
                   1732:   int l=1, l1, lmax=20;
                   1733:   double k1,k2,k3,k4,res,fx;
                   1734:   double p2[NPARMAX+1];
                   1735:   int k;
                   1736: 
                   1737:   fx=func(x);
                   1738:   for (k=1; k<=2; k++) {
                   1739:     for (i=1;i<=npar;i++) p2[i]=x[i];
                   1740:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1741:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1742:     k1=func(p2)-fx;
                   1743:   
                   1744:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1745:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1746:     k2=func(p2)-fx;
                   1747:   
                   1748:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1749:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1750:     k3=func(p2)-fx;
                   1751:   
                   1752:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1753:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1754:     k4=func(p2)-fx;
                   1755:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   1756: #ifdef DEBUG
                   1757:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1758:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1759: #endif
                   1760:   }
                   1761:   return res;
                   1762: }
                   1763: 
                   1764: /************** Inverse of matrix **************/
                   1765: void ludcmp(double **a, int n, int *indx, double *d) 
                   1766: { 
                   1767:   int i,imax,j,k; 
                   1768:   double big,dum,sum,temp; 
                   1769:   double *vv; 
                   1770:  
                   1771:   vv=vector(1,n); 
                   1772:   *d=1.0; 
                   1773:   for (i=1;i<=n;i++) { 
                   1774:     big=0.0; 
                   1775:     for (j=1;j<=n;j++) 
                   1776:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   1777:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   1778:     vv[i]=1.0/big; 
                   1779:   } 
                   1780:   for (j=1;j<=n;j++) { 
                   1781:     for (i=1;i<j;i++) { 
                   1782:       sum=a[i][j]; 
                   1783:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   1784:       a[i][j]=sum; 
                   1785:     } 
                   1786:     big=0.0; 
                   1787:     for (i=j;i<=n;i++) { 
                   1788:       sum=a[i][j]; 
                   1789:       for (k=1;k<j;k++) 
                   1790:        sum -= a[i][k]*a[k][j]; 
                   1791:       a[i][j]=sum; 
                   1792:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   1793:        big=dum; 
                   1794:        imax=i; 
                   1795:       } 
                   1796:     } 
                   1797:     if (j != imax) { 
                   1798:       for (k=1;k<=n;k++) { 
                   1799:        dum=a[imax][k]; 
                   1800:        a[imax][k]=a[j][k]; 
                   1801:        a[j][k]=dum; 
                   1802:       } 
                   1803:       *d = -(*d); 
                   1804:       vv[imax]=vv[j]; 
                   1805:     } 
                   1806:     indx[j]=imax; 
                   1807:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   1808:     if (j != n) { 
                   1809:       dum=1.0/(a[j][j]); 
                   1810:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   1811:     } 
                   1812:   } 
                   1813:   free_vector(vv,1,n);  /* Doesn't work */
                   1814: ;
                   1815: } 
                   1816: 
                   1817: void lubksb(double **a, int n, int *indx, double b[]) 
                   1818: { 
                   1819:   int i,ii=0,ip,j; 
                   1820:   double sum; 
                   1821:  
                   1822:   for (i=1;i<=n;i++) { 
                   1823:     ip=indx[i]; 
                   1824:     sum=b[ip]; 
                   1825:     b[ip]=b[i]; 
                   1826:     if (ii) 
                   1827:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   1828:     else if (sum) ii=i; 
                   1829:     b[i]=sum; 
                   1830:   } 
                   1831:   for (i=n;i>=1;i--) { 
                   1832:     sum=b[i]; 
                   1833:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   1834:     b[i]=sum/a[i][i]; 
                   1835:   } 
                   1836: } 
                   1837: 
                   1838: /************ Frequencies ********************/
1.84      brouard  1839: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
1.53      brouard  1840: {  /* Some frequencies */
                   1841:   
                   1842:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
                   1843:   int first;
                   1844:   double ***freq; /* Frequencies */
1.73      lievre   1845:   double *pp, **prop;
                   1846:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
1.53      brouard  1847:   FILE *ficresp;
                   1848:   char fileresp[FILENAMELENGTH];
                   1849:   
                   1850:   pp=vector(1,nlstate);
1.74      brouard  1851:   prop=matrix(1,nlstate,iagemin,iagemax+3);
1.53      brouard  1852:   strcpy(fileresp,"p");
                   1853:   strcat(fileresp,fileres);
                   1854:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   1855:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   1856:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   1857:     exit(0);
                   1858:   }
1.74      brouard  1859:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
1.53      brouard  1860:   j1=0;
                   1861:   
                   1862:   j=cptcoveff;
                   1863:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   1864: 
                   1865:   first=1;
                   1866: 
                   1867:   for(k1=1; k1<=j;k1++){
                   1868:     for(i1=1; i1<=ncodemax[k1];i1++){
                   1869:       j1++;
                   1870:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   1871:        scanf("%d", i);*/
                   1872:       for (i=-1; i<=nlstate+ndeath; i++)  
                   1873:        for (jk=-1; jk<=nlstate+ndeath; jk++)  
1.74      brouard  1874:          for(m=iagemin; m <= iagemax+3; m++)
1.53      brouard  1875:            freq[i][jk][m]=0;
1.73      lievre   1876: 
                   1877:     for (i=1; i<=nlstate; i++)  
1.74      brouard  1878:       for(m=iagemin; m <= iagemax+3; m++)
1.73      lievre   1879:        prop[i][m]=0;
1.53      brouard  1880:       
                   1881:       dateintsum=0;
                   1882:       k2cpt=0;
                   1883:       for (i=1; i<=imx; i++) {
                   1884:        bool=1;
                   1885:        if  (cptcovn>0) {
                   1886:          for (z1=1; z1<=cptcoveff; z1++) 
                   1887:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   1888:              bool=0;
                   1889:        }
1.58      lievre   1890:        if (bool==1){
1.53      brouard  1891:          for(m=firstpass; m<=lastpass; m++){
                   1892:            k2=anint[m][i]+(mint[m][i]/12.);
1.84      brouard  1893:            /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
1.74      brouard  1894:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   1895:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.73      lievre   1896:              if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
1.53      brouard  1897:              if (m<lastpass) {
                   1898:                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1.74      brouard  1899:                freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
1.53      brouard  1900:              }
                   1901:              
1.74      brouard  1902:              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
1.53      brouard  1903:                dateintsum=dateintsum+k2;
                   1904:                k2cpt++;
                   1905:              }
1.84      brouard  1906:              /*}*/
1.53      brouard  1907:          }
                   1908:        }
                   1909:       }
                   1910:        
1.84      brouard  1911:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.53      brouard  1912: 
                   1913:       if  (cptcovn>0) {
                   1914:        fprintf(ficresp, "\n#********** Variable "); 
                   1915:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   1916:        fprintf(ficresp, "**********\n#");
                   1917:       }
                   1918:       for(i=1; i<=nlstate;i++) 
                   1919:        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   1920:       fprintf(ficresp, "\n");
                   1921:       
1.74      brouard  1922:       for(i=iagemin; i <= iagemax+3; i++){
                   1923:        if(i==iagemax+3){
1.53      brouard  1924:          fprintf(ficlog,"Total");
                   1925:        }else{
                   1926:          if(first==1){
                   1927:            first=0;
                   1928:            printf("See log file for details...\n");
                   1929:          }
                   1930:          fprintf(ficlog,"Age %d", i);
                   1931:        }
                   1932:        for(jk=1; jk <=nlstate ; jk++){
                   1933:          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   1934:            pp[jk] += freq[jk][m][i]; 
                   1935:        }
                   1936:        for(jk=1; jk <=nlstate ; jk++){
                   1937:          for(m=-1, pos=0; m <=0 ; m++)
                   1938:            pos += freq[jk][m][i];
                   1939:          if(pp[jk]>=1.e-10){
                   1940:            if(first==1){
                   1941:            printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1942:            }
                   1943:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1944:          }else{
                   1945:            if(first==1)
                   1946:              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1947:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1948:          }
                   1949:        }
                   1950: 
                   1951:        for(jk=1; jk <=nlstate ; jk++){
                   1952:          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   1953:            pp[jk] += freq[jk][m][i];
1.73      lievre   1954:        }       
                   1955:        for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   1956:          pos += pp[jk];
                   1957:          posprop += prop[jk][i];
1.53      brouard  1958:        }
                   1959:        for(jk=1; jk <=nlstate ; jk++){
                   1960:          if(pos>=1.e-5){
                   1961:            if(first==1)
                   1962:              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   1963:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   1964:          }else{
                   1965:            if(first==1)
                   1966:              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   1967:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   1968:          }
1.74      brouard  1969:          if( i <= iagemax){
1.53      brouard  1970:            if(pos>=1.e-5){
1.73      lievre   1971:              fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
1.84      brouard  1972:              /*probs[i][jk][j1]= pp[jk]/pos;*/
1.53      brouard  1973:              /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   1974:            }
                   1975:            else
1.73      lievre   1976:              fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
1.53      brouard  1977:          }
                   1978:        }
                   1979:        
1.69      brouard  1980:        for(jk=-1; jk <=nlstate+ndeath; jk++)
                   1981:          for(m=-1; m <=nlstate+ndeath; m++)
1.53      brouard  1982:            if(freq[jk][m][i] !=0 ) {
                   1983:            if(first==1)
                   1984:              printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   1985:              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   1986:            }
1.74      brouard  1987:        if(i <= iagemax)
1.53      brouard  1988:          fprintf(ficresp,"\n");
                   1989:        if(first==1)
                   1990:          printf("Others in log...\n");
                   1991:        fprintf(ficlog,"\n");
                   1992:       }
                   1993:     }
                   1994:   }
                   1995:   dateintmean=dateintsum/k2cpt; 
                   1996:  
                   1997:   fclose(ficresp);
1.74      brouard  1998:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
1.53      brouard  1999:   free_vector(pp,1,nlstate);
1.74      brouard  2000:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
1.53      brouard  2001:   /* End of Freq */
                   2002: }
                   2003: 
                   2004: /************ Prevalence ********************/
1.84      brouard  2005: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
1.69      brouard  2006: {  
                   2007:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   2008:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   2009:      We still use firstpass and lastpass as another selection.
                   2010:   */
1.53      brouard  2011:  
                   2012:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   2013:   double ***freq; /* Frequencies */
1.73      lievre   2014:   double *pp, **prop;
                   2015:   double pos,posprop; 
1.69      brouard  2016:   double  y2; /* in fractional years */
1.74      brouard  2017:   int iagemin, iagemax;
1.53      brouard  2018: 
1.74      brouard  2019:   iagemin= (int) agemin;
                   2020:   iagemax= (int) agemax;
                   2021:   /*pp=vector(1,nlstate);*/
                   2022:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   2023:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
1.53      brouard  2024:   j1=0;
                   2025:   
                   2026:   j=cptcoveff;
                   2027:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2028:   
                   2029:   for(k1=1; k1<=j;k1++){
                   2030:     for(i1=1; i1<=ncodemax[k1];i1++){
                   2031:       j1++;
                   2032:       
1.73      lievre   2033:       for (i=1; i<=nlstate; i++)  
1.74      brouard  2034:        for(m=iagemin; m <= iagemax+3; m++)
                   2035:          prop[i][m]=0.0;
1.53      brouard  2036:      
1.69      brouard  2037:       for (i=1; i<=imx; i++) { /* Each individual */
1.53      brouard  2038:        bool=1;
                   2039:        if  (cptcovn>0) {
                   2040:          for (z1=1; z1<=cptcoveff; z1++) 
                   2041:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   2042:              bool=0;
                   2043:        } 
                   2044:        if (bool==1) { 
1.69      brouard  2045:          for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   2046:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   2047:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
1.74      brouard  2048:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2049:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2050:              if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   2051:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   2052:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   2053:                prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2054:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   2055:              } 
1.53      brouard  2056:            }
1.69      brouard  2057:          } /* end selection of waves */
1.53      brouard  2058:        }
                   2059:       }
1.74      brouard  2060:       for(i=iagemin; i <= iagemax+3; i++){  
1.53      brouard  2061:        
1.74      brouard  2062:        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   2063:          posprop += prop[jk][i]; 
                   2064:        } 
                   2065: 
                   2066:        for(jk=1; jk <=nlstate ; jk++){     
                   2067:          if( i <=  iagemax){ 
                   2068:            if(posprop>=1.e-5){ 
                   2069:              probs[i][jk][j1]= prop[jk][i]/posprop;
                   2070:            } 
                   2071:          } 
                   2072:        }/* end jk */ 
                   2073:       }/* end i */ 
1.53      brouard  2074:     } /* end i1 */
                   2075:   } /* end k1 */
                   2076:   
1.74      brouard  2077:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   2078:   /*free_vector(pp,1,nlstate);*/
                   2079:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   2080: }  /* End of prevalence */
1.53      brouard  2081: 
                   2082: /************* Waves Concatenation ***************/
                   2083: 
1.59      brouard  2084: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
1.53      brouard  2085: {
                   2086:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   2087:      Death is a valid wave (if date is known).
                   2088:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
1.59      brouard  2089:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.53      brouard  2090:      and mw[mi+1][i]. dh depends on stepm.
                   2091:      */
                   2092: 
                   2093:   int i, mi, m;
                   2094:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   2095:      double sum=0., jmean=0.;*/
                   2096:   int first;
                   2097:   int j, k=0,jk, ju, jl;
                   2098:   double sum=0.;
                   2099:   first=0;
                   2100:   jmin=1e+5;
                   2101:   jmax=-1;
                   2102:   jmean=0.;
                   2103:   for(i=1; i<=imx; i++){
                   2104:     mi=0;
                   2105:     m=firstpass;
                   2106:     while(s[m][i] <= nlstate){
1.69      brouard  2107:       if(s[m][i]>=1)
1.53      brouard  2108:        mw[++mi][i]=m;
                   2109:       if(m >=lastpass)
                   2110:        break;
                   2111:       else
                   2112:        m++;
                   2113:     }/* end while */
                   2114:     if (s[m][i] > nlstate){
                   2115:       mi++;    /* Death is another wave */
                   2116:       /* if(mi==0)  never been interviewed correctly before death */
                   2117:         /* Only death is a correct wave */
                   2118:       mw[mi][i]=m;
                   2119:     }
                   2120: 
                   2121:     wav[i]=mi;
                   2122:     if(mi==0){
1.91      brouard  2123:       nbwarn++;
1.53      brouard  2124:       if(first==0){
1.85      brouard  2125:        printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
1.53      brouard  2126:        first=1;
                   2127:       }
                   2128:       if(first==1){
1.85      brouard  2129:        fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
1.53      brouard  2130:       }
                   2131:     } /* end mi==0 */
1.77      brouard  2132:   } /* End individuals */
1.53      brouard  2133: 
                   2134:   for(i=1; i<=imx; i++){
                   2135:     for(mi=1; mi<wav[i];mi++){
                   2136:       if (stepm <=0)
                   2137:        dh[mi][i]=1;
                   2138:       else{
1.77      brouard  2139:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
1.53      brouard  2140:          if (agedc[i] < 2*AGESUP) {
1.85      brouard  2141:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   2142:            if(j==0) j=1;  /* Survives at least one month after exam */
                   2143:            else if(j<0){
1.91      brouard  2144:              nberr++;
1.85      brouard  2145:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.91      brouard  2146:              j=1; /* Temporary Dangerous patch */
1.86      brouard  2147:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
1.91      brouard  2148:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.85      brouard  2149:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   2150:            }
                   2151:            k=k+1;
                   2152:            if (j >= jmax) jmax=j;
                   2153:            if (j <= jmin) jmin=j;
                   2154:            sum=sum+j;
                   2155:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   2156:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
1.53      brouard  2157:          }
                   2158:        }
                   2159:        else{
                   2160:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.68      lievre   2161:          /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
1.53      brouard  2162:          k=k+1;
                   2163:          if (j >= jmax) jmax=j;
                   2164:          else if (j <= jmin)jmin=j;
                   2165:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
1.73      lievre   2166:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
1.85      brouard  2167:          if(j<0){
1.91      brouard  2168:            nberr++;
1.85      brouard  2169:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2170:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2171:          }
1.53      brouard  2172:          sum=sum+j;
                   2173:        }
                   2174:        jk= j/stepm;
                   2175:        jl= j -jk*stepm;
                   2176:        ju= j -(jk+1)*stepm;
1.85      brouard  2177:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
1.64      lievre   2178:          if(jl==0){
                   2179:            dh[mi][i]=jk;
                   2180:            bh[mi][i]=0;
                   2181:          }else{ /* We want a negative bias in order to only have interpolation ie
                   2182:                  * at the price of an extra matrix product in likelihood */
                   2183:            dh[mi][i]=jk+1;
                   2184:            bh[mi][i]=ju;
                   2185:          }
                   2186:        }else{
                   2187:          if(jl <= -ju){
                   2188:            dh[mi][i]=jk;
                   2189:            bh[mi][i]=jl;       /* bias is positive if real duration
                   2190:                                 * is higher than the multiple of stepm and negative otherwise.
                   2191:                                 */
                   2192:          }
                   2193:          else{
                   2194:            dh[mi][i]=jk+1;
                   2195:            bh[mi][i]=ju;
                   2196:          }
                   2197:          if(dh[mi][i]==0){
                   2198:            dh[mi][i]=1; /* At least one step */
                   2199:            bh[mi][i]=ju; /* At least one step */
1.71      brouard  2200:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
1.64      lievre   2201:          }
1.85      brouard  2202:        } /* end if mle */
                   2203:       }
1.64      lievre   2204:     } /* end wave */
1.53      brouard  2205:   }
                   2206:   jmean=sum/k;
                   2207:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2208:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2209:  }
                   2210: 
                   2211: /*********** Tricode ****************************/
                   2212: void tricode(int *Tvar, int **nbcode, int imx)
                   2213: {
1.58      lievre   2214:   
                   2215:   int Ndum[20],ij=1, k, j, i, maxncov=19;
1.53      brouard  2216:   int cptcode=0;
                   2217:   cptcoveff=0; 
                   2218:  
1.58      lievre   2219:   for (k=0; k<maxncov; k++) Ndum[k]=0;
1.53      brouard  2220:   for (k=1; k<=7; k++) ncodemax[k]=0;
                   2221: 
                   2222:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.58      lievre   2223:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   2224:                               modality*/ 
                   2225:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                   2226:       Ndum[ij]++; /*store the modality */
1.53      brouard  2227:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.58      lievre   2228:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   2229:                                       Tvar[j]. If V=sex and male is 0 and 
                   2230:                                       female is 1, then  cptcode=1.*/
1.53      brouard  2231:     }
                   2232: 
                   2233:     for (i=0; i<=cptcode; i++) {
1.58      lievre   2234:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
1.53      brouard  2235:     }
1.58      lievre   2236: 
1.53      brouard  2237:     ij=1; 
                   2238:     for (i=1; i<=ncodemax[j]; i++) {
1.58      lievre   2239:       for (k=0; k<= maxncov; k++) {
1.53      brouard  2240:        if (Ndum[k] != 0) {
                   2241:          nbcode[Tvar[j]][ij]=k; 
1.58      lievre   2242:          /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
1.53      brouard  2243:          
                   2244:          ij++;
                   2245:        }
                   2246:        if (ij > ncodemax[j]) break; 
                   2247:       }  
                   2248:     } 
                   2249:   }  
                   2250: 
1.58      lievre   2251:  for (k=0; k< maxncov; k++) Ndum[k]=0;
1.53      brouard  2252: 
1.58      lievre   2253:  for (i=1; i<=ncovmodel-2; i++) { 
                   2254:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
1.53      brouard  2255:    ij=Tvar[i];
1.58      lievre   2256:    Ndum[ij]++;
1.53      brouard  2257:  }
                   2258: 
                   2259:  ij=1;
1.58      lievre   2260:  for (i=1; i<= maxncov; i++) {
1.53      brouard  2261:    if((Ndum[i]!=0) && (i<=ncovcol)){
1.58      lievre   2262:      Tvaraff[ij]=i; /*For printing */
1.53      brouard  2263:      ij++;
                   2264:    }
                   2265:  }
                   2266:  
1.58      lievre   2267:  cptcoveff=ij-1; /*Number of simple covariates*/
1.53      brouard  2268: }
                   2269: 
                   2270: /*********** Health Expectancies ****************/
                   2271: 
                   2272: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
                   2273: 
                   2274: {
                   2275:   /* Health expectancies */
                   2276:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                   2277:   double age, agelim, hf;
                   2278:   double ***p3mat,***varhe;
                   2279:   double **dnewm,**doldm;
                   2280:   double *xp;
                   2281:   double **gp, **gm;
                   2282:   double ***gradg, ***trgradg;
                   2283:   int theta;
                   2284: 
1.74      brouard  2285:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
1.53      brouard  2286:   xp=vector(1,npar);
1.74      brouard  2287:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   2288:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
1.53      brouard  2289:   
                   2290:   fprintf(ficreseij,"# Health expectancies\n");
                   2291:   fprintf(ficreseij,"# Age");
                   2292:   for(i=1; i<=nlstate;i++)
                   2293:     for(j=1; j<=nlstate;j++)
                   2294:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   2295:   fprintf(ficreseij,"\n");
                   2296: 
                   2297:   if(estepm < stepm){
                   2298:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2299:   }
                   2300:   else  hstepm=estepm;   
                   2301:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   2302:    * This is mainly to measure the difference between two models: for example
                   2303:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   2304:    * we are calculating an estimate of the Life Expectancy assuming a linear 
1.66      brouard  2305:    * progression in between and thus overestimating or underestimating according
1.53      brouard  2306:    * to the curvature of the survival function. If, for the same date, we 
                   2307:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   2308:    * to compare the new estimate of Life expectancy with the same linear 
                   2309:    * hypothesis. A more precise result, taking into account a more precise
                   2310:    * curvature will be obtained if estepm is as small as stepm. */
                   2311: 
                   2312:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2313:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2314:      nhstepm is the number of hstepm from age to agelim 
                   2315:      nstepm is the number of stepm from age to agelin. 
                   2316:      Look at hpijx to understand the reason of that which relies in memory size
                   2317:      and note for a fixed period like estepm months */
                   2318:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2319:      survival function given by stepm (the optimization length). Unfortunately it
                   2320:      means that if the survival funtion is printed only each two years of age and if
                   2321:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2322:      results. So we changed our mind and took the option of the best precision.
                   2323:   */
                   2324:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2325: 
                   2326:   agelim=AGESUP;
                   2327:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2328:     /* nhstepm age range expressed in number of stepm */
                   2329:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                   2330:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   2331:     /* if (stepm >= YEARM) hstepm=1;*/
                   2332:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2333:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.74      brouard  2334:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   2335:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   2336:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
1.53      brouard  2337: 
                   2338:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   2339:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   2340:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   2341:  
                   2342: 
                   2343:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2344: 
1.95      brouard  2345:     /* Computing  Variances of health expectancies */
1.53      brouard  2346: 
                   2347:      for(theta=1; theta <=npar; theta++){
                   2348:       for(i=1; i<=npar; i++){ 
                   2349:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2350:       }
                   2351:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2352:   
                   2353:       cptj=0;
                   2354:       for(j=1; j<= nlstate; j++){
                   2355:        for(i=1; i<=nlstate; i++){
                   2356:          cptj=cptj+1;
                   2357:          for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                   2358:            gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2359:          }
                   2360:        }
                   2361:       }
                   2362:      
                   2363:      
                   2364:       for(i=1; i<=npar; i++) 
                   2365:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2366:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2367:       
                   2368:       cptj=0;
                   2369:       for(j=1; j<= nlstate; j++){
                   2370:        for(i=1;i<=nlstate;i++){
                   2371:          cptj=cptj+1;
                   2372:          for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
1.77      brouard  2373: 
1.53      brouard  2374:            gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2375:          }
                   2376:        }
                   2377:       }
1.74      brouard  2378:       for(j=1; j<= nlstate*nlstate; j++)
1.53      brouard  2379:        for(h=0; h<=nhstepm-1; h++){
                   2380:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2381:        }
                   2382:      } 
                   2383:    
                   2384: /* End theta */
                   2385: 
1.74      brouard  2386:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2387: 
                   2388:      for(h=0; h<=nhstepm-1; h++)
1.74      brouard  2389:       for(j=1; j<=nlstate*nlstate;j++)
1.53      brouard  2390:        for(theta=1; theta <=npar; theta++)
                   2391:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2392:      
                   2393: 
1.74      brouard  2394:      for(i=1;i<=nlstate*nlstate;i++)
                   2395:       for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2396:        varhe[i][j][(int)age] =0.;
                   2397: 
                   2398:      printf("%d|",(int)age);fflush(stdout);
                   2399:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   2400:      for(h=0;h<=nhstepm-1;h++){
                   2401:       for(k=0;k<=nhstepm-1;k++){
1.74      brouard  2402:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   2403:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   2404:        for(i=1;i<=nlstate*nlstate;i++)
                   2405:          for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2406:            varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2407:       }
                   2408:     }
                   2409:     /* Computing expectancies */
                   2410:     for(i=1; i<=nlstate;i++)
                   2411:       for(j=1; j<=nlstate;j++)
                   2412:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   2413:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   2414:          
                   2415: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   2416: 
                   2417:        }
                   2418: 
                   2419:     fprintf(ficreseij,"%3.0f",age );
                   2420:     cptj=0;
                   2421:     for(i=1; i<=nlstate;i++)
                   2422:       for(j=1; j<=nlstate;j++){
                   2423:        cptj++;
                   2424:        fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                   2425:       }
                   2426:     fprintf(ficreseij,"\n");
                   2427:    
1.74      brouard  2428:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   2429:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   2430:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   2431:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2432:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2433:   }
                   2434:   printf("\n");
                   2435:   fprintf(ficlog,"\n");
                   2436: 
                   2437:   free_vector(xp,1,npar);
1.74      brouard  2438:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   2439:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   2440:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
1.53      brouard  2441: }
                   2442: 
                   2443: /************ Variance ******************/
                   2444: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                   2445: {
                   2446:   /* Variance of health expectancies */
                   2447:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   2448:   /* double **newm;*/
                   2449:   double **dnewm,**doldm;
                   2450:   double **dnewmp,**doldmp;
                   2451:   int i, j, nhstepm, hstepm, h, nstepm ;
                   2452:   int k, cptcode;
                   2453:   double *xp;
                   2454:   double **gp, **gm;  /* for var eij */
                   2455:   double ***gradg, ***trgradg; /*for var eij */
                   2456:   double **gradgp, **trgradgp; /* for var p point j */
                   2457:   double *gpp, *gmp; /* for var p point j */
                   2458:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   2459:   double ***p3mat;
                   2460:   double age,agelim, hf;
                   2461:   double ***mobaverage;
                   2462:   int theta;
                   2463:   char digit[4];
1.55      lievre   2464:   char digitp[25];
1.53      brouard  2465: 
                   2466:   char fileresprobmorprev[FILENAMELENGTH];
                   2467: 
1.55      lievre   2468:   if(popbased==1){
1.58      lievre   2469:     if(mobilav!=0)
1.55      lievre   2470:       strcpy(digitp,"-populbased-mobilav-");
                   2471:     else strcpy(digitp,"-populbased-nomobil-");
                   2472:   }
                   2473:   else 
1.53      brouard  2474:     strcpy(digitp,"-stablbased-");
1.56      lievre   2475: 
1.54      brouard  2476:   if (mobilav!=0) {
1.53      brouard  2477:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  2478:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   2479:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   2480:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   2481:     }
1.53      brouard  2482:   }
                   2483: 
                   2484:   strcpy(fileresprobmorprev,"prmorprev"); 
                   2485:   sprintf(digit,"%-d",ij);
                   2486:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   2487:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   2488:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   2489:   strcat(fileresprobmorprev,fileres);
                   2490:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   2491:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   2492:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   2493:   }
                   2494:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   2495:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
1.66      brouard  2496:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.53      brouard  2497:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   2498:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2499:     fprintf(ficresprobmorprev," p.%-d SE",j);
                   2500:     for(i=1; i<=nlstate;i++)
                   2501:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   2502:   }  
                   2503:   fprintf(ficresprobmorprev,"\n");
1.88      brouard  2504:   fprintf(ficgp,"\n# Routine varevsij");
1.87      brouard  2505:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   2506:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   2507: /*   } */
1.53      brouard  2508:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2509: 
                   2510:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   2511:   fprintf(ficresvij,"# Age");
                   2512:   for(i=1; i<=nlstate;i++)
                   2513:     for(j=1; j<=nlstate;j++)
                   2514:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                   2515:   fprintf(ficresvij,"\n");
                   2516: 
                   2517:   xp=vector(1,npar);
                   2518:   dnewm=matrix(1,nlstate,1,npar);
                   2519:   doldm=matrix(1,nlstate,1,nlstate);
                   2520:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   2521:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2522: 
                   2523:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   2524:   gpp=vector(nlstate+1,nlstate+ndeath);
                   2525:   gmp=vector(nlstate+1,nlstate+ndeath);
                   2526:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2527:   
                   2528:   if(estepm < stepm){
                   2529:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2530:   }
                   2531:   else  hstepm=estepm;   
                   2532:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2533:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2534:      nhstepm is the number of hstepm from age to agelim 
                   2535:      nstepm is the number of stepm from age to agelin. 
                   2536:      Look at hpijx to understand the reason of that which relies in memory size
                   2537:      and note for a fixed period like k years */
                   2538:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2539:      survival function given by stepm (the optimization length). Unfortunately it
1.66      brouard  2540:      means that if the survival funtion is printed every two years of age and if
1.53      brouard  2541:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2542:      results. So we changed our mind and took the option of the best precision.
                   2543:   */
                   2544:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2545:   agelim = AGESUP;
                   2546:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2547:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2548:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2549:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2550:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   2551:     gp=matrix(0,nhstepm,1,nlstate);
                   2552:     gm=matrix(0,nhstepm,1,nlstate);
                   2553: 
                   2554: 
                   2555:     for(theta=1; theta <=npar; theta++){
1.66      brouard  2556:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
1.53      brouard  2557:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2558:       }
                   2559:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2560:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2561: 
                   2562:       if (popbased==1) {
1.54      brouard  2563:        if(mobilav ==0){
1.53      brouard  2564:          for(i=1; i<=nlstate;i++)
                   2565:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2566:        }else{ /* mobilav */ 
1.53      brouard  2567:          for(i=1; i<=nlstate;i++)
                   2568:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2569:        }
                   2570:       }
                   2571:   
                   2572:       for(j=1; j<= nlstate; j++){
                   2573:        for(h=0; h<=nhstepm; h++){
                   2574:          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   2575:            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2576:        }
                   2577:       }
1.66      brouard  2578:       /* This for computing probability of death (h=1 means
                   2579:          computed over hstepm matrices product = hstepm*stepm months) 
                   2580:          as a weighted average of prlim.
                   2581:       */
1.69      brouard  2582:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2583:        for(i=1,gpp[j]=0.; i<= nlstate; i++)
1.53      brouard  2584:          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   2585:       }    
1.66      brouard  2586:       /* end probability of death */
1.53      brouard  2587: 
1.66      brouard  2588:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
1.53      brouard  2589:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2590:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2591:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2592:  
                   2593:       if (popbased==1) {
1.54      brouard  2594:        if(mobilav ==0){
1.53      brouard  2595:          for(i=1; i<=nlstate;i++)
                   2596:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2597:        }else{ /* mobilav */ 
1.53      brouard  2598:          for(i=1; i<=nlstate;i++)
                   2599:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2600:        }
                   2601:       }
                   2602: 
                   2603:       for(j=1; j<= nlstate; j++){
                   2604:        for(h=0; h<=nhstepm; h++){
                   2605:          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   2606:            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2607:        }
                   2608:       }
1.66      brouard  2609:       /* This for computing probability of death (h=1 means
                   2610:          computed over hstepm matrices product = hstepm*stepm months) 
                   2611:          as a weighted average of prlim.
                   2612:       */
1.69      brouard  2613:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2614:        for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   2615:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
1.53      brouard  2616:       }    
1.66      brouard  2617:       /* end probability of death */
1.53      brouard  2618: 
                   2619:       for(j=1; j<= nlstate; j++) /* vareij */
                   2620:        for(h=0; h<=nhstepm; h++){
                   2621:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2622:        }
1.68      lievre   2623: 
1.53      brouard  2624:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   2625:        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   2626:       }
                   2627: 
                   2628:     } /* End theta */
                   2629: 
                   2630:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   2631: 
                   2632:     for(h=0; h<=nhstepm; h++) /* veij */
                   2633:       for(j=1; j<=nlstate;j++)
                   2634:        for(theta=1; theta <=npar; theta++)
                   2635:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2636: 
                   2637:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
1.69      brouard  2638:       for(theta=1; theta <=npar; theta++)
1.53      brouard  2639:        trgradgp[j][theta]=gradgp[theta][j];
1.69      brouard  2640:   
1.53      brouard  2641: 
                   2642:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2643:     for(i=1;i<=nlstate;i++)
                   2644:       for(j=1;j<=nlstate;j++)
                   2645:        vareij[i][j][(int)age] =0.;
                   2646: 
                   2647:     for(h=0;h<=nhstepm;h++){
                   2648:       for(k=0;k<=nhstepm;k++){
                   2649:        matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   2650:        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   2651:        for(i=1;i<=nlstate;i++)
                   2652:          for(j=1;j<=nlstate;j++)
                   2653:            vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2654:       }
                   2655:     }
1.70      brouard  2656:   
1.53      brouard  2657:     /* pptj */
                   2658:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   2659:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
1.70      brouard  2660:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   2661:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
1.53      brouard  2662:        varppt[j][i]=doldmp[j][i];
                   2663:     /* end ppptj */
1.66      brouard  2664:     /*  x centered again */
1.53      brouard  2665:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                   2666:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   2667:  
                   2668:     if (popbased==1) {
1.54      brouard  2669:       if(mobilav ==0){
1.53      brouard  2670:        for(i=1; i<=nlstate;i++)
                   2671:          prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2672:       }else{ /* mobilav */ 
1.53      brouard  2673:        for(i=1; i<=nlstate;i++)
                   2674:          prlim[i][i]=mobaverage[(int)age][i][ij];
                   2675:       }
                   2676:     }
1.70      brouard  2677:              
1.66      brouard  2678:     /* This for computing probability of death (h=1 means
                   2679:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   2680:        as a weighted average of prlim.
                   2681:     */
1.68      lievre   2682:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   2683:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
1.53      brouard  2684:        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   2685:     }    
1.66      brouard  2686:     /* end probability of death */
1.53      brouard  2687: 
                   2688:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   2689:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2690:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   2691:       for(i=1; i<=nlstate;i++){
                   2692:        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   2693:       }
                   2694:     } 
                   2695:     fprintf(ficresprobmorprev,"\n");
                   2696: 
                   2697:     fprintf(ficresvij,"%.0f ",age );
                   2698:     for(i=1; i<=nlstate;i++)
                   2699:       for(j=1; j<=nlstate;j++){
                   2700:        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   2701:       }
                   2702:     fprintf(ficresvij,"\n");
                   2703:     free_matrix(gp,0,nhstepm,1,nlstate);
                   2704:     free_matrix(gm,0,nhstepm,1,nlstate);
                   2705:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   2706:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   2707:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2708:   } /* End age */
                   2709:   free_vector(gpp,nlstate+1,nlstate+ndeath);
                   2710:   free_vector(gmp,nlstate+1,nlstate+ndeath);
                   2711:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   2712:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2713:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   2714:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   2715:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
1.67      brouard  2716: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   2717: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   2718: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
1.88      brouard  2719:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   2720:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   2721:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                   2722:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   2723:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2724:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   2725: */
1.88      brouard  2726: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
1.89      brouard  2727:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2728: 
                   2729:   free_vector(xp,1,npar);
                   2730:   free_matrix(doldm,1,nlstate,1,nlstate);
                   2731:   free_matrix(dnewm,1,nlstate,1,npar);
                   2732:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2733:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   2734:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
1.55      lievre   2735:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  2736:   fclose(ficresprobmorprev);
1.88      brouard  2737:   fflush(ficgp);
                   2738:   fflush(fichtm); 
1.84      brouard  2739: }  /* end varevsij */
1.53      brouard  2740: 
                   2741: /************ Variance of prevlim ******************/
                   2742: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                   2743: {
                   2744:   /* Variance of prevalence limit */
1.59      brouard  2745:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.53      brouard  2746:   double **newm;
                   2747:   double **dnewm,**doldm;
                   2748:   int i, j, nhstepm, hstepm;
                   2749:   int k, cptcode;
                   2750:   double *xp;
                   2751:   double *gp, *gm;
                   2752:   double **gradg, **trgradg;
                   2753:   double age,agelim;
                   2754:   int theta;
                   2755:    
1.54      brouard  2756:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
1.53      brouard  2757:   fprintf(ficresvpl,"# Age");
                   2758:   for(i=1; i<=nlstate;i++)
                   2759:       fprintf(ficresvpl," %1d-%1d",i,i);
                   2760:   fprintf(ficresvpl,"\n");
                   2761: 
                   2762:   xp=vector(1,npar);
                   2763:   dnewm=matrix(1,nlstate,1,npar);
                   2764:   doldm=matrix(1,nlstate,1,nlstate);
                   2765:   
                   2766:   hstepm=1*YEARM; /* Every year of age */
                   2767:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   2768:   agelim = AGESUP;
                   2769:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2770:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2771:     if (stepm >= YEARM) hstepm=1;
                   2772:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   2773:     gradg=matrix(1,npar,1,nlstate);
                   2774:     gp=vector(1,nlstate);
                   2775:     gm=vector(1,nlstate);
                   2776: 
                   2777:     for(theta=1; theta <=npar; theta++){
                   2778:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   2779:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2780:       }
                   2781:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2782:       for(i=1;i<=nlstate;i++)
                   2783:        gp[i] = prlim[i][i];
                   2784:     
                   2785:       for(i=1; i<=npar; i++) /* Computes gradient */
                   2786:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2787:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2788:       for(i=1;i<=nlstate;i++)
                   2789:        gm[i] = prlim[i][i];
                   2790: 
                   2791:       for(i=1;i<=nlstate;i++)
                   2792:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   2793:     } /* End theta */
                   2794: 
                   2795:     trgradg =matrix(1,nlstate,1,npar);
                   2796: 
                   2797:     for(j=1; j<=nlstate;j++)
                   2798:       for(theta=1; theta <=npar; theta++)
                   2799:        trgradg[j][theta]=gradg[theta][j];
                   2800: 
                   2801:     for(i=1;i<=nlstate;i++)
                   2802:       varpl[i][(int)age] =0.;
                   2803:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   2804:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   2805:     for(i=1;i<=nlstate;i++)
                   2806:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   2807: 
                   2808:     fprintf(ficresvpl,"%.0f ",age );
                   2809:     for(i=1; i<=nlstate;i++)
                   2810:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   2811:     fprintf(ficresvpl,"\n");
                   2812:     free_vector(gp,1,nlstate);
                   2813:     free_vector(gm,1,nlstate);
                   2814:     free_matrix(gradg,1,npar,1,nlstate);
                   2815:     free_matrix(trgradg,1,nlstate,1,npar);
                   2816:   } /* End age */
                   2817: 
                   2818:   free_vector(xp,1,npar);
                   2819:   free_matrix(doldm,1,nlstate,1,npar);
                   2820:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   2821: 
                   2822: }
                   2823: 
                   2824: /************ Variance of one-step probabilities  ******************/
                   2825: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                   2826: {
                   2827:   int i, j=0,  i1, k1, l1, t, tj;
                   2828:   int k2, l2, j1,  z1;
                   2829:   int k=0,l, cptcode;
                   2830:   int first=1, first1;
                   2831:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   2832:   double **dnewm,**doldm;
                   2833:   double *xp;
                   2834:   double *gp, *gm;
                   2835:   double **gradg, **trgradg;
                   2836:   double **mu;
                   2837:   double age,agelim, cov[NCOVMAX];
                   2838:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   2839:   int theta;
                   2840:   char fileresprob[FILENAMELENGTH];
                   2841:   char fileresprobcov[FILENAMELENGTH];
                   2842:   char fileresprobcor[FILENAMELENGTH];
                   2843: 
                   2844:   double ***varpij;
                   2845: 
                   2846:   strcpy(fileresprob,"prob"); 
                   2847:   strcat(fileresprob,fileres);
                   2848:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   2849:     printf("Problem with resultfile: %s\n", fileresprob);
                   2850:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   2851:   }
                   2852:   strcpy(fileresprobcov,"probcov"); 
                   2853:   strcat(fileresprobcov,fileres);
                   2854:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   2855:     printf("Problem with resultfile: %s\n", fileresprobcov);
                   2856:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   2857:   }
                   2858:   strcpy(fileresprobcor,"probcor"); 
                   2859:   strcat(fileresprobcor,fileres);
                   2860:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   2861:     printf("Problem with resultfile: %s\n", fileresprobcor);
                   2862:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   2863:   }
                   2864:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2865:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2866:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2867:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2868:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   2869:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   2870:   
                   2871:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   2872:   fprintf(ficresprob,"# Age");
                   2873:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   2874:   fprintf(ficresprobcov,"# Age");
                   2875:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   2876:   fprintf(ficresprobcov,"# Age");
                   2877: 
                   2878: 
                   2879:   for(i=1; i<=nlstate;i++)
                   2880:     for(j=1; j<=(nlstate+ndeath);j++){
                   2881:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   2882:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   2883:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   2884:     }  
1.69      brouard  2885:  /* fprintf(ficresprob,"\n");
1.53      brouard  2886:   fprintf(ficresprobcov,"\n");
                   2887:   fprintf(ficresprobcor,"\n");
1.69      brouard  2888:  */
                   2889:  xp=vector(1,npar);
1.53      brouard  2890:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   2891:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   2892:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   2893:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   2894:   first=1;
1.88      brouard  2895:   fprintf(ficgp,"\n# Routine varprob");
                   2896:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   2897:   fprintf(fichtm,"\n");
                   2898: 
1.95      brouard  2899:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                   2900:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
1.91      brouard  2901:   file %s<br>\n",optionfilehtmcov);
                   2902:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   2903: and drawn. It helps understanding how is the covariance between two incidences.\
                   2904:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   2905:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   2906: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   2907: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   2908: standard deviations wide on each axis. <br>\
                   2909:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   2910:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   2911: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
1.53      brouard  2912: 
                   2913:   cov[1]=1;
                   2914:   tj=cptcoveff;
                   2915:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   2916:   j1=0;
                   2917:   for(t=1; t<=tj;t++){
                   2918:     for(i1=1; i1<=ncodemax[t];i1++){ 
                   2919:       j1++;
                   2920:       if  (cptcovn>0) {
                   2921:        fprintf(ficresprob, "\n#********** Variable "); 
                   2922:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2923:        fprintf(ficresprob, "**********\n#\n");
1.53      brouard  2924:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   2925:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2926:        fprintf(ficresprobcov, "**********\n#\n");
1.53      brouard  2927:        
                   2928:        fprintf(ficgp, "\n#********** Variable "); 
1.69      brouard  2929:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2930:        fprintf(ficgp, "**********\n#\n");
1.53      brouard  2931:        
                   2932:        
1.96      brouard  2933:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
1.53      brouard  2934:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.96      brouard  2935:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
1.53      brouard  2936:        
                   2937:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   2938:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2939:        fprintf(ficresprobcor, "**********\n#");    
1.53      brouard  2940:       }
                   2941:       
                   2942:       for (age=bage; age<=fage; age ++){ 
                   2943:        cov[2]=age;
                   2944:        for (k=1; k<=cptcovn;k++) {
                   2945:          cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                   2946:        }
                   2947:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   2948:        for (k=1; k<=cptcovprod;k++)
                   2949:          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   2950:        
                   2951:        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   2952:        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   2953:        gp=vector(1,(nlstate)*(nlstate+ndeath));
                   2954:        gm=vector(1,(nlstate)*(nlstate+ndeath));
                   2955:     
                   2956:        for(theta=1; theta <=npar; theta++){
                   2957:          for(i=1; i<=npar; i++)
1.74      brouard  2958:            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.53      brouard  2959:          
                   2960:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   2961:          
                   2962:          k=0;
                   2963:          for(i=1; i<= (nlstate); i++){
                   2964:            for(j=1; j<=(nlstate+ndeath);j++){
                   2965:              k=k+1;
                   2966:              gp[k]=pmmij[i][j];
                   2967:            }
                   2968:          }
                   2969:          
                   2970:          for(i=1; i<=npar; i++)
1.74      brouard  2971:            xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.53      brouard  2972:     
                   2973:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   2974:          k=0;
                   2975:          for(i=1; i<=(nlstate); i++){
                   2976:            for(j=1; j<=(nlstate+ndeath);j++){
                   2977:              k=k+1;
                   2978:              gm[k]=pmmij[i][j];
                   2979:            }
                   2980:          }
                   2981:      
                   2982:          for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
1.74      brouard  2983:            gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
1.53      brouard  2984:        }
                   2985: 
                   2986:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   2987:          for(theta=1; theta <=npar; theta++)
                   2988:            trgradg[j][theta]=gradg[theta][j];
                   2989:        
                   2990:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   2991:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.59      brouard  2992:        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   2993:        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   2994:        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   2995:        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   2996: 
1.53      brouard  2997:        pmij(pmmij,cov,ncovmodel,x,nlstate);
                   2998:        
                   2999:        k=0;
                   3000:        for(i=1; i<=(nlstate); i++){
                   3001:          for(j=1; j<=(nlstate+ndeath);j++){
                   3002:            k=k+1;
                   3003:            mu[k][(int) age]=pmmij[i][j];
                   3004:          }
                   3005:        }
                   3006:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   3007:          for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   3008:            varpij[i][j][(int)age] = doldm[i][j];
                   3009: 
                   3010:        /*printf("\n%d ",(int)age);
1.59      brouard  3011:          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3012:          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3013:          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3014:          }*/
1.53      brouard  3015: 
                   3016:        fprintf(ficresprob,"\n%d ",(int)age);
                   3017:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   3018:        fprintf(ficresprobcor,"\n%d ",(int)age);
                   3019: 
                   3020:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   3021:          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   3022:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3023:          fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   3024:          fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   3025:        }
                   3026:        i=0;
                   3027:        for (k=1; k<=(nlstate);k++){
                   3028:          for (l=1; l<=(nlstate+ndeath);l++){ 
                   3029:            i=i++;
                   3030:            fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   3031:            fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   3032:            for (j=1; j<=i;j++){
                   3033:              fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   3034:              fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   3035:            }
                   3036:          }
                   3037:        }/* end of loop for state */
                   3038:       } /* end of loop for age */
                   3039: 
                   3040:       /* Confidence intervalle of pij  */
                   3041:       /*
1.59      brouard  3042:        fprintf(ficgp,"\nset noparametric;unset label");
                   3043:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   3044:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   3045:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   3046:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   3047:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   3048:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
1.53      brouard  3049:       */
                   3050: 
                   3051:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   3052:       first1=1;
                   3053:       for (k2=1; k2<=(nlstate);k2++){
                   3054:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   3055:          if(l2==k2) continue;
                   3056:          j=(k2-1)*(nlstate+ndeath)+l2;
                   3057:          for (k1=1; k1<=(nlstate);k1++){
                   3058:            for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   3059:              if(l1==k1) continue;
                   3060:              i=(k1-1)*(nlstate+ndeath)+l1;
                   3061:              if(i<=j) continue;
                   3062:              for (age=bage; age<=fage; age ++){ 
                   3063:                if ((int)age %5==0){
                   3064:                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   3065:                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3066:                  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3067:                  mu1=mu[i][(int) age]/stepm*YEARM ;
                   3068:                  mu2=mu[j][(int) age]/stepm*YEARM;
                   3069:                  c12=cv12/sqrt(v1*v2);
                   3070:                  /* Computing eigen value of matrix of covariance */
                   3071:                  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3072:                  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3073:                  /* Eigen vectors */
                   3074:                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   3075:                  /*v21=sqrt(1.-v11*v11); *//* error */
                   3076:                  v21=(lc1-v1)/cv12*v11;
                   3077:                  v12=-v21;
                   3078:                  v22=v11;
                   3079:                  tnalp=v21/v11;
                   3080:                  if(first1==1){
                   3081:                    first1=0;
                   3082:                    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3083:                  }
                   3084:                  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3085:                  /*printf(fignu*/
                   3086:                  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   3087:                  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   3088:                  if(first==1){
                   3089:                    first=0;
                   3090:                    fprintf(ficgp,"\nset parametric;unset label");
                   3091:                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   3092:                    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
1.91      brouard  3093:                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.88      brouard  3094:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   3095: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   3096:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   3097:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.91      brouard  3098:                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   3099:                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
1.88      brouard  3100:                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3101:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3102:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3103:                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3104:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3105:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3106:                  }else{
                   3107:                    first=0;
1.91      brouard  3108:                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
1.53      brouard  3109:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3110:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3111:                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3112:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3113:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3114:                  }/* if first */
                   3115:                } /* age mod 5 */
                   3116:              } /* end loop age */
1.88      brouard  3117:              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3118:              first=1;
                   3119:            } /*l12 */
                   3120:          } /* k12 */
                   3121:        } /*l1 */
                   3122:       }/* k1 */
                   3123:     } /* loop covariates */
                   3124:   }
1.59      brouard  3125:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   3126:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
1.53      brouard  3127:   free_vector(xp,1,npar);
                   3128:   fclose(ficresprob);
                   3129:   fclose(ficresprobcov);
                   3130:   fclose(ficresprobcor);
1.91      brouard  3131:   fflush(ficgp);
                   3132:   fflush(fichtmcov);
1.53      brouard  3133: }
                   3134: 
                   3135: 
                   3136: /******************* Printing html file ***********/
                   3137: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                   3138:                  int lastpass, int stepm, int weightopt, char model[],\
                   3139:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   3140:                  int popforecast, int estepm ,\
                   3141:                  double jprev1, double mprev1,double anprev1, \
                   3142:                  double jprev2, double mprev2,double anprev2){
                   3143:   int jj1, k1, i1, cpt;
                   3144: 
1.85      brouard  3145:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
1.96      brouard  3146:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                   3147:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   3148:    fprintf(fichtm,"\
                   3149:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   3150:           stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                   3151:    fprintf(fichtm,"\
                   3152:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   3153:           subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   3154:    fprintf(fichtm,"\
1.85      brouard  3155:  - Life expectancies by age and initial health status (estepm=%2d months): \
1.96      brouard  3156:    <a href=\"%s\">%s</a> <br>\n</li>",
1.88      brouard  3157:           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
1.53      brouard  3158: 
                   3159: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                   3160: 
                   3161:  m=cptcoveff;
                   3162:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3163: 
                   3164:  jj1=0;
                   3165:  for(k1=1; k1<=m;k1++){
                   3166:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3167:      jj1++;
                   3168:      if (cptcovn > 0) {
                   3169:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3170:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3171:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3172:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3173:      }
                   3174:      /* Pij */
1.88      brouard  3175:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
                   3176: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
1.53      brouard  3177:      /* Quasi-incidences */
1.85      brouard  3178:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.88      brouard  3179:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
                   3180: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
1.53      brouard  3181:        /* Stable prevalence in each health state */
                   3182:        for(cpt=1; cpt<nlstate;cpt++){
1.85      brouard  3183:         fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
1.88      brouard  3184: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
1.53      brouard  3185:        }
                   3186:      for(cpt=1; cpt<=nlstate;cpt++) {
1.88      brouard  3187:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
1.89      brouard  3188: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
1.53      brouard  3189:      }
                   3190:    } /* end i1 */
                   3191:  }/* End k1 */
                   3192:  fprintf(fichtm,"</ul>");
                   3193: 
                   3194: 
1.96      brouard  3195:  fprintf(fichtm,"\
                   3196: \n<br><li><h4> Result files (second order: variances)</h4>\n\
                   3197:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   3198: 
                   3199:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3200:         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   3201:  fprintf(fichtm,"\
                   3202:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3203:         subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   3204: 
                   3205:  fprintf(fichtm,"\
                   3206:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3207:         subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   3208:  fprintf(fichtm,"\
                   3209:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   3210:         estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   3211:  fprintf(fichtm,"\
                   3212:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
                   3213:         subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                   3214:  fprintf(fichtm,"\
1.88      brouard  3215:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   3216:         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
1.53      brouard  3217: 
1.76      brouard  3218: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   3219: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   3220: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   3221: /*     <br>",fileres,fileres,fileres,fileres); */
                   3222: /*  else  */
                   3223: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.96      brouard  3224:  fflush(fichtm);
                   3225:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
1.53      brouard  3226: 
                   3227:  m=cptcoveff;
                   3228:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3229: 
                   3230:  jj1=0;
                   3231:  for(k1=1; k1<=m;k1++){
                   3232:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3233:      jj1++;
                   3234:      if (cptcovn > 0) {
                   3235:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3236:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3237:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3238:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3239:      }
                   3240:      for(cpt=1; cpt<=nlstate;cpt++) {
1.95      brouard  3241:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
                   3242: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
1.90      brouard  3243: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
1.53      brouard  3244:      }
1.96      brouard  3245:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                   3246: health expectancies in states (1) and (2): %s%d.png<br>\
                   3247: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
1.53      brouard  3248:    } /* end i1 */
                   3249:  }/* End k1 */
                   3250:  fprintf(fichtm,"</ul>");
1.87      brouard  3251:  fflush(fichtm);
1.53      brouard  3252: }
                   3253: 
                   3254: /******************* Gnuplot file **************/
1.89      brouard  3255: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.53      brouard  3256: 
1.88      brouard  3257:   char dirfileres[132],optfileres[132];
1.53      brouard  3258:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   3259:   int ng;
1.88      brouard  3260: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   3261: /*     printf("Problem with file %s",optionfilegnuplot); */
                   3262: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   3263: /*   } */
1.53      brouard  3264: 
1.54      brouard  3265:   /*#ifdef windows */
1.89      brouard  3266:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.54      brouard  3267:     /*#endif */
1.88      brouard  3268:   m=pow(2,cptcoveff);
                   3269: 
                   3270:   strcpy(dirfileres,optionfilefiname);
                   3271:   strcpy(optfileres,"vpl");
1.53      brouard  3272:  /* 1eme*/
                   3273:   for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3274:    for (k1=1; k1<= m ; k1 ++) {
1.88      brouard  3275:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   3276:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                   3277:      fprintf(ficgp,"set xlabel \"Age\" \n\
                   3278: set ylabel \"Probability\" \n\
                   3279: set ter png small\n\
                   3280: set size 0.65,0.65\n\
                   3281: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3282: 
                   3283:      for (i=1; i<= nlstate ; i ++) {
                   3284:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3285:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3286:      }
1.88      brouard  3287:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3288:      for (i=1; i<= nlstate ; i ++) {
                   3289:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3290:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3291:      } 
1.88      brouard  3292:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
1.53      brouard  3293:      for (i=1; i<= nlstate ; i ++) {
                   3294:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3295:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3296:      }  
1.88      brouard  3297:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
1.53      brouard  3298:    }
                   3299:   }
                   3300:   /*2 eme*/
                   3301:   
                   3302:   for (k1=1; k1<= m ; k1 ++) { 
1.88      brouard  3303:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
1.53      brouard  3304:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                   3305:     
                   3306:     for (i=1; i<= nlstate+1 ; i ++) {
                   3307:       k=2*i;
1.88      brouard  3308:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3309:       for (j=1; j<= nlstate+1 ; j ++) {
                   3310:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3311:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3312:       }   
                   3313:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   3314:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
1.88      brouard  3315:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3316:       for (j=1; j<= nlstate+1 ; j ++) {
                   3317:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3318:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3319:       }   
                   3320:       fprintf(ficgp,"\" t\"\" w l 0,");
1.88      brouard  3321:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3322:       for (j=1; j<= nlstate+1 ; j ++) {
                   3323:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3324:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3325:       }   
                   3326:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                   3327:       else fprintf(ficgp,"\" t\"\" w l 0,");
                   3328:     }
                   3329:   }
                   3330:   
                   3331:   /*3eme*/
                   3332:   
                   3333:   for (k1=1; k1<= m ; k1 ++) { 
                   3334:     for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3335:       k=2+nlstate*(2*cpt-2);
1.88      brouard  3336:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
                   3337:       fprintf(ficgp,"set ter png small\n\
                   3338: set size 0.65,0.65\n\
                   3339: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
1.53      brouard  3340:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3341:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3342:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3343:        fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3344:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3345:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3346:        
                   3347:       */
                   3348:       for (i=1; i< nlstate ; i ++) {
1.88      brouard  3349:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
1.53      brouard  3350:        
                   3351:       } 
                   3352:     }
                   3353:   }
                   3354:   
1.76      brouard  3355:   /* CV preval stable (period) */
1.53      brouard  3356:   for (k1=1; k1<= m ; k1 ++) { 
1.76      brouard  3357:     for (cpt=1; cpt<=nlstate ; cpt ++) {
1.53      brouard  3358:       k=3;
1.88      brouard  3359:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                   3360:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                   3361: set ter png small\nset size 0.65,0.65\n\
1.89      brouard  3362: unset log y\n\
1.88      brouard  3363: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
1.53      brouard  3364:       
1.83      lievre   3365:       for (i=1; i< nlstate ; i ++)
1.53      brouard  3366:        fprintf(ficgp,"+$%d",k+i+1);
                   3367:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                   3368:       
                   3369:       l=3+(nlstate+ndeath)*cpt;
1.88      brouard  3370:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
1.53      brouard  3371:       for (i=1; i< nlstate ; i ++) {
                   3372:        l=3+(nlstate+ndeath)*cpt;
                   3373:        fprintf(ficgp,"+$%d",l+i+1);
                   3374:       }
                   3375:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
                   3376:     } 
                   3377:   }  
                   3378:   
                   3379:   /* proba elementaires */
                   3380:   for(i=1,jk=1; i <=nlstate; i++){
                   3381:     for(k=1; k <=(nlstate+ndeath); k++){
                   3382:       if (k != i) {
                   3383:        for(j=1; j <=ncovmodel; j++){
                   3384:          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   3385:          jk++; 
                   3386:          fprintf(ficgp,"\n");
                   3387:        }
                   3388:       }
                   3389:     }
                   3390:    }
                   3391: 
                   3392:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                   3393:      for(jk=1; jk <=m; jk++) {
1.88      brouard  3394:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
1.53      brouard  3395:        if (ng==2)
                   3396:         fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   3397:        else
                   3398:         fprintf(ficgp,"\nset title \"Probability\"\n");
                   3399:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   3400:        i=1;
                   3401:        for(k2=1; k2<=nlstate; k2++) {
                   3402:         k3=i;
                   3403:         for(k=1; k<=(nlstate+ndeath); k++) {
                   3404:           if (k != k2){
                   3405:             if(ng==2)
                   3406:               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   3407:             else
                   3408:               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   3409:             ij=1;
                   3410:             for(j=3; j <=ncovmodel; j++) {
                   3411:               if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3412:                 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3413:                 ij++;
                   3414:               }
                   3415:               else
                   3416:                 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3417:             }
                   3418:             fprintf(ficgp,")/(1");
                   3419:             
                   3420:             for(k1=1; k1 <=nlstate; k1++){   
                   3421:               fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   3422:               ij=1;
                   3423:               for(j=3; j <=ncovmodel; j++){
                   3424:                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3425:                   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3426:                   ij++;
                   3427:                 }
                   3428:                 else
                   3429:                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3430:               }
                   3431:               fprintf(ficgp,")");
                   3432:             }
                   3433:             fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   3434:             if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   3435:             i=i+ncovmodel;
                   3436:           }
                   3437:         } /* end k */
                   3438:        } /* end k2 */
                   3439:      } /* end jk */
                   3440:    } /* end ng */
1.88      brouard  3441:    fflush(ficgp); 
1.53      brouard  3442: }  /* end gnuplot */
                   3443: 
                   3444: 
                   3445: /*************** Moving average **************/
1.54      brouard  3446: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
1.53      brouard  3447: 
                   3448:   int i, cpt, cptcod;
1.58      lievre   3449:   int modcovmax =1;
1.54      brouard  3450:   int mobilavrange, mob;
1.53      brouard  3451:   double age;
1.58      lievre   3452: 
                   3453:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   3454:                           a covariate has 2 modalities */
                   3455:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                   3456: 
1.54      brouard  3457:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   3458:     if(mobilav==1) mobilavrange=5; /* default */
                   3459:     else mobilavrange=mobilav;
                   3460:     for (age=bage; age<=fage; age++)
                   3461:       for (i=1; i<=nlstate;i++)
1.58      lievre   3462:        for (cptcod=1;cptcod<=modcovmax;cptcod++)
1.54      brouard  3463:          mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   3464:     /* We keep the original values on the extreme ages bage, fage and for 
                   3465:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   3466:        we use a 5 terms etc. until the borders are no more concerned. 
                   3467:     */ 
                   3468:     for (mob=3;mob <=mobilavrange;mob=mob+2){
                   3469:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   3470:        for (i=1; i<=nlstate;i++){
1.58      lievre   3471:          for (cptcod=1;cptcod<=modcovmax;cptcod++){
1.54      brouard  3472:            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   3473:              for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   3474:                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   3475:                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   3476:              }
                   3477:            mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   3478:          }
1.53      brouard  3479:        }
1.54      brouard  3480:       }/* end age */
                   3481:     }/* end mob */
                   3482:   }else return -1;
                   3483:   return 0;
                   3484: }/* End movingaverage */
1.53      brouard  3485: 
                   3486: 
                   3487: /************** Forecasting ******************/
1.70      brouard  3488: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
1.69      brouard  3489:   /* proj1, year, month, day of starting projection 
                   3490:      agemin, agemax range of age
                   3491:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.70      brouard  3492:      anproj2 year of en of projection (same day and month as proj1).
1.69      brouard  3493:   */
1.73      lievre   3494:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
1.53      brouard  3495:   int *popage;
1.70      brouard  3496:   double agec; /* generic age */
                   3497:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
1.53      brouard  3498:   double *popeffectif,*popcount;
                   3499:   double ***p3mat;
1.55      lievre   3500:   double ***mobaverage;
1.53      brouard  3501:   char fileresf[FILENAMELENGTH];
                   3502: 
1.69      brouard  3503:   agelim=AGESUP;
1.84      brouard  3504:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3505:  
                   3506:   strcpy(fileresf,"f"); 
                   3507:   strcat(fileresf,fileres);
                   3508:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   3509:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   3510:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   3511:   }
                   3512:   printf("Computing forecasting: result on file '%s' \n", fileresf);
                   3513:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
                   3514: 
                   3515:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3516: 
1.54      brouard  3517:   if (mobilav!=0) {
1.53      brouard  3518:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3519:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3520:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3521:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3522:     }
1.53      brouard  3523:   }
                   3524: 
                   3525:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3526:   if (stepm<=12) stepsize=1;
1.74      brouard  3527:   if(estepm < stepm){
                   3528:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3529:   }
                   3530:   else  hstepm=estepm;   
                   3531: 
1.53      brouard  3532:   hstepm=hstepm/stepm; 
1.69      brouard  3533:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   3534:                                fractional in yp1 */
1.53      brouard  3535:   anprojmean=yp;
                   3536:   yp2=modf((yp1*12),&yp);
                   3537:   mprojmean=yp;
                   3538:   yp1=modf((yp2*30.5),&yp);
                   3539:   jprojmean=yp;
                   3540:   if(jprojmean==0) jprojmean=1;
                   3541:   if(mprojmean==0) jprojmean=1;
1.73      lievre   3542: 
                   3543:   i1=cptcoveff;
                   3544:   if (cptcovn < 1){i1=1;}
1.53      brouard  3545:   
1.70      brouard  3546:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
1.53      brouard  3547:   
1.70      brouard  3548:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.73      lievre   3549: 
1.75      brouard  3550: /*           if (h==(int)(YEARM*yearp)){ */
1.73      lievre   3551:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
1.53      brouard  3552:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3553:       k=k+1;
                   3554:       fprintf(ficresf,"\n#******");
                   3555:       for(j=1;j<=cptcoveff;j++) {
1.70      brouard  3556:        fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.53      brouard  3557:       }
                   3558:       fprintf(ficresf,"******\n");
1.70      brouard  3559:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                   3560:       for(j=1; j<=nlstate+ndeath;j++){ 
                   3561:        for(i=1; i<=nlstate;i++)              
                   3562:           fprintf(ficresf," p%d%d",i,j);
                   3563:        fprintf(ficresf," p.%d",j);
                   3564:       }
1.74      brouard  3565:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
1.53      brouard  3566:        fprintf(ficresf,"\n");
1.70      brouard  3567:        fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
1.53      brouard  3568: 
1.71      brouard  3569:        for (agec=fage; agec>=(ageminpar-1); agec--){ 
1.70      brouard  3570:          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
1.53      brouard  3571:          nhstepm = nhstepm/hstepm; 
                   3572:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3573:          oldm=oldms;savm=savms;
1.70      brouard  3574:          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
1.53      brouard  3575:        
                   3576:          for (h=0; h<=nhstepm; h++){
1.75      brouard  3577:            if (h*hstepm/YEARM*stepm ==yearp) {
1.69      brouard  3578:               fprintf(ficresf,"\n");
                   3579:               for(j=1;j<=cptcoveff;j++) 
                   3580:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.70      brouard  3581:              fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
1.53      brouard  3582:            } 
                   3583:            for(j=1; j<=nlstate+ndeath;j++) {
1.70      brouard  3584:              ppij=0.;
1.71      brouard  3585:              for(i=1; i<=nlstate;i++) {
1.53      brouard  3586:                if (mobilav==1) 
1.71      brouard  3587:                  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
1.53      brouard  3588:                else {
1.71      brouard  3589:                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
1.53      brouard  3590:                }
1.75      brouard  3591:                if (h*hstepm/YEARM*stepm== yearp) {
1.70      brouard  3592:                  fprintf(ficresf," %.3f", p3mat[i][j][h]);
1.75      brouard  3593:                }
                   3594:              } /* end i */
                   3595:              if (h*hstepm/YEARM*stepm==yearp) {
1.70      brouard  3596:                fprintf(ficresf," %.3f", ppij);
1.53      brouard  3597:              }
1.75      brouard  3598:            }/* end j */
                   3599:          } /* end h */
1.53      brouard  3600:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.75      brouard  3601:        } /* end agec */
                   3602:       } /* end yearp */
                   3603:     } /* end cptcod */
                   3604:   } /* end  cptcov */
1.53      brouard  3605:        
1.54      brouard  3606:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3607: 
                   3608:   fclose(ficresf);
                   3609: }
1.70      brouard  3610: 
                   3611: /************** Forecasting *****not tested NB*************/
1.53      brouard  3612: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                   3613:   
                   3614:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   3615:   int *popage;
1.69      brouard  3616:   double calagedatem, agelim, kk1, kk2;
1.53      brouard  3617:   double *popeffectif,*popcount;
                   3618:   double ***p3mat,***tabpop,***tabpopprev;
1.55      lievre   3619:   double ***mobaverage;
1.53      brouard  3620:   char filerespop[FILENAMELENGTH];
                   3621: 
                   3622:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3623:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3624:   agelim=AGESUP;
1.69      brouard  3625:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
1.53      brouard  3626:   
1.84      brouard  3627:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3628:   
                   3629:   
                   3630:   strcpy(filerespop,"pop"); 
                   3631:   strcat(filerespop,fileres);
                   3632:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   3633:     printf("Problem with forecast resultfile: %s\n", filerespop);
                   3634:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                   3635:   }
                   3636:   printf("Computing forecasting: result on file '%s' \n", filerespop);
                   3637:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                   3638: 
                   3639:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3640: 
1.54      brouard  3641:   if (mobilav!=0) {
1.53      brouard  3642:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3643:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3644:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3645:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3646:     }
1.53      brouard  3647:   }
                   3648: 
                   3649:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3650:   if (stepm<=12) stepsize=1;
                   3651:   
                   3652:   agelim=AGESUP;
                   3653:   
                   3654:   hstepm=1;
                   3655:   hstepm=hstepm/stepm; 
                   3656:   
                   3657:   if (popforecast==1) {
                   3658:     if((ficpop=fopen(popfile,"r"))==NULL) {
                   3659:       printf("Problem with population file : %s\n",popfile);exit(0);
                   3660:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   3661:     } 
                   3662:     popage=ivector(0,AGESUP);
                   3663:     popeffectif=vector(0,AGESUP);
                   3664:     popcount=vector(0,AGESUP);
                   3665:     
                   3666:     i=1;   
                   3667:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   3668:    
                   3669:     imx=i;
                   3670:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                   3671:   }
                   3672: 
1.69      brouard  3673:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
1.53      brouard  3674:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3675:       k=k+1;
                   3676:       fprintf(ficrespop,"\n#******");
                   3677:       for(j=1;j<=cptcoveff;j++) {
                   3678:        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   3679:       }
                   3680:       fprintf(ficrespop,"******\n");
                   3681:       fprintf(ficrespop,"# Age");
                   3682:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                   3683:       if (popforecast==1)  fprintf(ficrespop," [Population]");
                   3684:       
                   3685:       for (cpt=0; cpt<=0;cpt++) { 
                   3686:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   3687:        
1.69      brouard  3688:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3689:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3690:          nhstepm = nhstepm/hstepm; 
                   3691:          
                   3692:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3693:          oldm=oldms;savm=savms;
                   3694:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3695:        
                   3696:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3697:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3698:              fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3699:            } 
                   3700:            for(j=1; j<=nlstate+ndeath;j++) {
                   3701:              kk1=0.;kk2=0;
                   3702:              for(i=1; i<=nlstate;i++) {              
                   3703:                if (mobilav==1) 
                   3704:                  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   3705:                else {
                   3706:                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   3707:                }
                   3708:              }
1.69      brouard  3709:              if (h==(int)(calagedatem+12*cpt)){
1.53      brouard  3710:                tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   3711:                  /*fprintf(ficrespop," %.3f", kk1);
                   3712:                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                   3713:              }
                   3714:            }
                   3715:            for(i=1; i<=nlstate;i++){
                   3716:              kk1=0.;
                   3717:                for(j=1; j<=nlstate;j++){
                   3718:                  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   3719:                }
1.69      brouard  3720:                  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
1.53      brouard  3721:            }
                   3722: 
1.69      brouard  3723:            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
1.53      brouard  3724:              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                   3725:          }
                   3726:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3727:        }
                   3728:       }
                   3729:  
                   3730:   /******/
                   3731: 
                   3732:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                   3733:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
1.69      brouard  3734:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3735:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3736:          nhstepm = nhstepm/hstepm; 
                   3737:          
                   3738:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3739:          oldm=oldms;savm=savms;
                   3740:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3741:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3742:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3743:              fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3744:            } 
                   3745:            for(j=1; j<=nlstate+ndeath;j++) {
                   3746:              kk1=0.;kk2=0;
                   3747:              for(i=1; i<=nlstate;i++) {              
                   3748:                kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   3749:              }
1.69      brouard  3750:              if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
1.53      brouard  3751:            }
                   3752:          }
                   3753:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3754:        }
                   3755:       }
                   3756:    } 
                   3757:   }
                   3758:  
1.54      brouard  3759:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3760: 
                   3761:   if (popforecast==1) {
                   3762:     free_ivector(popage,0,AGESUP);
                   3763:     free_vector(popeffectif,0,AGESUP);
                   3764:     free_vector(popcount,0,AGESUP);
                   3765:   }
                   3766:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3767:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3768:   fclose(ficrespop);
1.84      brouard  3769: } /* End of popforecast */
1.53      brouard  3770: 
1.87      brouard  3771: int fileappend(FILE *fichier, char *optionfich)
1.86      brouard  3772: {
1.87      brouard  3773:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   3774:     printf("Problem with file: %s\n", optionfich);
                   3775:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   3776:     return (0);
1.86      brouard  3777:   }
1.87      brouard  3778:   fflush(fichier);
                   3779:   return (1);
1.86      brouard  3780: }
1.94      brouard  3781: 
                   3782: 
                   3783: /**************** function prwizard **********************/
1.88      brouard  3784: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   3785: {
                   3786: 
1.94      brouard  3787:   /* Wizard to print covariance matrix template */
                   3788: 
1.88      brouard  3789:   char ca[32], cb[32], cc[32];
                   3790:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
                   3791:   int numlinepar;
                   3792: 
                   3793:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3794:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3795:   for(i=1; i <=nlstate; i++){
                   3796:     jj=0;
                   3797:     for(j=1; j <=nlstate+ndeath; j++){
                   3798:       if(j==i) continue;
                   3799:       jj++;
                   3800:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   3801:       printf("%1d%1d",i,j);
                   3802:       fprintf(ficparo,"%1d%1d",i,j);
                   3803:       for(k=1; k<=ncovmodel;k++){
                   3804:        /*        printf(" %lf",param[i][j][k]); */
                   3805:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   3806:        printf(" 0.");
                   3807:        fprintf(ficparo," 0.");
                   3808:       }
                   3809:       printf("\n");
                   3810:       fprintf(ficparo,"\n");
                   3811:     }
                   3812:   }
                   3813:   printf("# Scales (for hessian or gradient estimation)\n");
                   3814:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   3815:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   3816:   for(i=1; i <=nlstate; i++){
                   3817:     jj=0;
                   3818:     for(j=1; j <=nlstate+ndeath; j++){
                   3819:       if(j==i) continue;
                   3820:       jj++;
                   3821:       fprintf(ficparo,"%1d%1d",i,j);
                   3822:       printf("%1d%1d",i,j);
                   3823:       fflush(stdout);
                   3824:       for(k=1; k<=ncovmodel;k++){
                   3825:        /*      printf(" %le",delti3[i][j][k]); */
                   3826:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   3827:        printf(" 0.");
                   3828:        fprintf(ficparo," 0.");
                   3829:       }
                   3830:       numlinepar++;
                   3831:       printf("\n");
                   3832:       fprintf(ficparo,"\n");
                   3833:     }
                   3834:   }
                   3835:   printf("# Covariance matrix\n");
                   3836: /* # 121 Var(a12)\n\ */
                   3837: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3838: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   3839: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   3840: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   3841: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   3842: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   3843: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   3844:   fflush(stdout);
                   3845:   fprintf(ficparo,"# Covariance matrix\n");
                   3846:   /* # 121 Var(a12)\n\ */
                   3847:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3848:   /* #   ...\n\ */
                   3849:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   3850:   
                   3851:   for(itimes=1;itimes<=2;itimes++){
                   3852:     jj=0;
                   3853:     for(i=1; i <=nlstate; i++){
                   3854:       for(j=1; j <=nlstate+ndeath; j++){
                   3855:        if(j==i) continue;
                   3856:        for(k=1; k<=ncovmodel;k++){
                   3857:          jj++;
                   3858:          ca[0]= k+'a'-1;ca[1]='\0';
                   3859:          if(itimes==1){
                   3860:            printf("#%1d%1d%d",i,j,k);
                   3861:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   3862:          }else{
                   3863:            printf("%1d%1d%d",i,j,k);
                   3864:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   3865:            /*  printf(" %.5le",matcov[i][j]); */
                   3866:          }
                   3867:          ll=0;
                   3868:          for(li=1;li <=nlstate; li++){
                   3869:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   3870:              if(lj==li) continue;
                   3871:              for(lk=1;lk<=ncovmodel;lk++){
                   3872:                ll++;
                   3873:                if(ll<=jj){
                   3874:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   3875:                  if(ll<jj){
                   3876:                    if(itimes==1){
                   3877:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3878:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3879:                    }else{
                   3880:                      printf(" 0.");
                   3881:                      fprintf(ficparo," 0.");
                   3882:                    }
                   3883:                  }else{
                   3884:                    if(itimes==1){
                   3885:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   3886:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   3887:                    }else{
                   3888:                      printf(" 0.");
                   3889:                      fprintf(ficparo," 0.");
                   3890:                    }
                   3891:                  }
                   3892:                }
                   3893:              } /* end lk */
                   3894:            } /* end lj */
                   3895:          } /* end li */
                   3896:          printf("\n");
                   3897:          fprintf(ficparo,"\n");
                   3898:          numlinepar++;
                   3899:        } /* end k*/
                   3900:       } /*end j */
                   3901:     } /* end i */
1.95      brouard  3902:   } /* end itimes */
1.88      brouard  3903: 
                   3904: } /* end of prwizard */
1.98      brouard  3905: /******************* Gompertz Likelihood ******************************/
                   3906: double gompertz(double x[])
                   3907: { 
                   3908:   double A,B,L=0.0,sump=0.,num=0.;
                   3909:   int i,n=0; /* n is the size of the sample */
                   3910:   for (i=0;i<=imx-1 ; i++) {
                   3911:     sump=sump+weight[i];
                   3912:     sump=sump+1;
                   3913:     num=num+1;
                   3914:   }
                   3915:  
                   3916:  
                   3917:   /* for (i=1; i<=imx; i++) 
                   3918:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   3919: 
                   3920:   for (i=0;i<=imx-1 ; i++)
                   3921:     {
                   3922:       if (cens[i]==1 & wav[i]>1)
                   3923:        A=-x[1]/(x[2])*
                   3924:          (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
                   3925:       
                   3926:       if (cens[i]==0 & wav[i]>1)
                   3927:        A=-x[1]/(x[2])*
                   3928:              (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
                   3929:          +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
                   3930:       
                   3931:       if (wav[i]>1 & agecens[i]>15) {
                   3932:        L=L+A*weight[i];
                   3933:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   3934:       }
                   3935:     }
                   3936: 
                   3937:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   3938:  
                   3939:   return -2*L*num/sump;
                   3940: }
                   3941: 
                   3942: /******************* Printing html file ***********/
                   3943: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                   3944:                  int lastpass, int stepm, int weightopt, char model[],\
                   3945:                  int imx,  double p[],double **matcov){
                   3946:   int i;
                   3947: 
                   3948:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   3949:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   3950:   for (i=1;i<=2;i++) 
                   3951:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   3952:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
                   3953:   fprintf(fichtm,"</ul>");
                   3954:   fflush(fichtm);
                   3955: }
                   3956: 
                   3957: /******************* Gnuplot file **************/
                   3958: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   3959: 
                   3960:   char dirfileres[132],optfileres[132];
                   3961:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   3962:   int ng;
                   3963: 
                   3964: 
                   3965:   /*#ifdef windows */
                   3966:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   3967:     /*#endif */
                   3968: 
                   3969: 
                   3970:   strcpy(dirfileres,optionfilefiname);
                   3971:   strcpy(optfileres,"vpl");
                   3972:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
                   3973:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
                   3974:   fprintf(ficgp, "set ter png small\n set log y\n"); 
                   3975:   fprintf(ficgp, "set size 0.65,0.65\n");
                   3976:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   3977: 
                   3978: } 
                   3979: 
                   3980: 
1.88      brouard  3981: 
1.91      brouard  3982: 
1.53      brouard  3983: /***********************************************/
                   3984: /**************** Main Program *****************/
                   3985: /***********************************************/
                   3986: 
                   3987: int main(int argc, char *argv[])
                   3988: {
1.61      brouard  3989:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.74      brouard  3990:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
1.95      brouard  3991:   int jj, ll, li, lj, lk, imk;
1.85      brouard  3992:   int numlinepar=0; /* Current linenumber of parameter file */
1.95      brouard  3993:   int itimes;
1.98      brouard  3994:   int NDIM=2;
1.95      brouard  3995: 
                   3996:   char ca[32], cb[32], cc[32];
1.87      brouard  3997:   /*  FILE *fichtm; *//* Html File */
                   3998:   /* FILE *ficgp;*/ /*Gnuplot File */
1.53      brouard  3999:   double agedeb, agefin,hf;
                   4000:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
                   4001: 
                   4002:   double fret;
                   4003:   double **xi,tmp,delta;
                   4004: 
                   4005:   double dum; /* Dummy variable */
                   4006:   double ***p3mat;
                   4007:   double ***mobaverage;
                   4008:   int *indx;
                   4009:   char line[MAXLINE], linepar[MAXLINE];
1.88      brouard  4010:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
1.99    ! brouard  4011:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.53      brouard  4012:   int firstobs=1, lastobs=10;
                   4013:   int sdeb, sfin; /* Status at beginning and end */
                   4014:   int c,  h , cpt,l;
                   4015:   int ju,jl, mi;
                   4016:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.59      brouard  4017:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
1.69      brouard  4018:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.53      brouard  4019:   int mobilav=0,popforecast=0;
                   4020:   int hstepm, nhstepm;
1.74      brouard  4021:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   4022:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
1.53      brouard  4023: 
                   4024:   double bage, fage, age, agelim, agebase;
                   4025:   double ftolpl=FTOL;
                   4026:   double **prlim;
                   4027:   double *severity;
                   4028:   double ***param; /* Matrix of parameters */
                   4029:   double  *p;
                   4030:   double **matcov; /* Matrix of covariance */
                   4031:   double ***delti3; /* Scale */
                   4032:   double *delti; /* Scale */
                   4033:   double ***eij, ***vareij;
                   4034:   double **varpl; /* Variances of prevalence limits by age */
                   4035:   double *epj, vepp;
                   4036:   double kk1, kk2;
1.74      brouard  4037:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
1.98      brouard  4038:   double **ximort;
1.53      brouard  4039:   char *alph[]={"a","a","b","c","d","e"}, str[4];
1.98      brouard  4040:   int *dcwave;
1.53      brouard  4041: 
                   4042:   char z[1]="c", occ;
1.86      brouard  4043: 
1.53      brouard  4044:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1.88      brouard  4045:   char strstart[80], *strt, strtend[80];
1.85      brouard  4046:   char *stratrunc;
                   4047:   int lstra;
                   4048: 
                   4049:   long total_usecs;
1.53      brouard  4050:  
1.95      brouard  4051: /*   setlocale (LC_ALL, ""); */
                   4052: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   4053: /*   textdomain (PACKAGE); */
                   4054: /*   setlocale (LC_CTYPE, ""); */
                   4055: /*   setlocale (LC_MESSAGES, ""); */
                   4056: 
1.85      brouard  4057:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
                   4058:   (void) gettimeofday(&start_time,&tzp);
1.91      brouard  4059:   curr_time=start_time;
1.85      brouard  4060:   tm = *localtime(&start_time.tv_sec);
                   4061:   tmg = *gmtime(&start_time.tv_sec);
1.88      brouard  4062:   strcpy(strstart,asctime(&tm));
1.86      brouard  4063: 
1.88      brouard  4064: /*  printf("Localtime (at start)=%s",strstart); */
1.85      brouard  4065: /*  tp.tv_sec = tp.tv_sec +86400; */
                   4066: /*  tm = *localtime(&start_time.tv_sec); */
                   4067: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   4068: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   4069: /*   tmg.tm_hour=tmg.tm_hour + 1; */
                   4070: /*   tp.tv_sec = mktime(&tmg); */
                   4071: /*   strt=asctime(&tmg); */
1.88      brouard  4072: /*   printf("Time(after) =%s",strstart);  */
1.85      brouard  4073: /*  (void) time (&time_value);
                   4074: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   4075: *  tm = *localtime(&time_value);
1.88      brouard  4076: *  strstart=asctime(&tm);
                   4077: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
1.85      brouard  4078: */
                   4079: 
1.91      brouard  4080:   nberr=0; /* Number of errors and warnings */
                   4081:   nbwarn=0;
1.53      brouard  4082:   getcwd(pathcd, size);
                   4083: 
1.81      brouard  4084:   printf("\n%s\n%s",version,fullversion);
1.53      brouard  4085:   if(argc <=1){
                   4086:     printf("\nEnter the parameter file name: ");
                   4087:     scanf("%s",pathtot);
                   4088:   }
                   4089:   else{
                   4090:     strcpy(pathtot,argv[1]);
                   4091:   }
1.88      brouard  4092:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
1.53      brouard  4093:   /*cygwin_split_path(pathtot,path,optionfile);
                   4094:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   4095:   /* cutv(path,optionfile,pathtot,'\\');*/
                   4096: 
1.99    ! brouard  4097:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
        !          4098:  /*   strcpy(pathimach,argv[0]); */
1.53      brouard  4099:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
1.99    ! brouard  4100:   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.53      brouard  4101:   chdir(path);
1.88      brouard  4102:   strcpy(command,"mkdir ");
                   4103:   strcat(command,optionfilefiname);
                   4104:   if((outcmd=system(command)) != 0){
                   4105:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                   4106:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   4107:     /* fclose(ficlog); */
                   4108: /*     exit(1); */
                   4109:   }
                   4110: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   4111: /*     perror("mkdir"); */
                   4112: /*   } */
1.53      brouard  4113: 
1.59      brouard  4114:   /*-------- arguments in the command line --------*/
1.53      brouard  4115: 
                   4116:   /* Log file */
                   4117:   strcat(filelog, optionfilefiname);
                   4118:   strcat(filelog,".log");    /* */
                   4119:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   4120:     printf("Problem with logfile %s\n",filelog);
                   4121:     goto end;
                   4122:   }
                   4123:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.85      brouard  4124:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
1.99    ! brouard  4125:   fprintf(ficlog,"\nEnter the parameter file name: \n");
        !          4126:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
1.88      brouard  4127:  path=%s \n\
                   4128:  optionfile=%s\n\
                   4129:  optionfilext=%s\n\
1.99    ! brouard  4130:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.86      brouard  4131: 
1.94      brouard  4132:   printf("Local time (at start):%s",strstart);
                   4133:   fprintf(ficlog,"Local time (at start): %s",strstart);
1.53      brouard  4134:   fflush(ficlog);
1.91      brouard  4135: /*   (void) gettimeofday(&curr_time,&tzp); */
                   4136: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
1.53      brouard  4137: 
                   4138:   /* */
                   4139:   strcpy(fileres,"r");
                   4140:   strcat(fileres, optionfilefiname);
                   4141:   strcat(fileres,".txt");    /* Other files have txt extension */
                   4142: 
                   4143:   /*---------arguments file --------*/
                   4144: 
                   4145:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
                   4146:     printf("Problem with optionfile %s\n",optionfile);
                   4147:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
1.85      brouard  4148:     fflush(ficlog);
1.53      brouard  4149:     goto end;
                   4150:   }
                   4151: 
1.88      brouard  4152: 
                   4153: 
1.53      brouard  4154:   strcpy(filereso,"o");
                   4155:   strcat(filereso,fileres);
1.88      brouard  4156:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
1.53      brouard  4157:     printf("Problem with Output resultfile: %s\n", filereso);
                   4158:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
1.85      brouard  4159:     fflush(ficlog);
1.53      brouard  4160:     goto end;
                   4161:   }
                   4162: 
                   4163:   /* Reads comments: lines beginning with '#' */
1.85      brouard  4164:   numlinepar=0;
1.53      brouard  4165:   while((c=getc(ficpar))=='#' && c!= EOF){
                   4166:     ungetc(c,ficpar);
                   4167:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4168:     numlinepar++;
1.53      brouard  4169:     puts(line);
                   4170:     fputs(line,ficparo);
1.85      brouard  4171:     fputs(line,ficlog);
1.53      brouard  4172:   }
                   4173:   ungetc(c,ficpar);
                   4174: 
                   4175:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
1.85      brouard  4176:   numlinepar++;
1.53      brouard  4177:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
                   4178:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
1.85      brouard  4179:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   4180:   fflush(ficlog);
1.59      brouard  4181:   while((c=getc(ficpar))=='#' && c!= EOF){
1.53      brouard  4182:     ungetc(c,ficpar);
                   4183:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4184:     numlinepar++;
1.53      brouard  4185:     puts(line);
                   4186:     fputs(line,ficparo);
1.85      brouard  4187:     fputs(line,ficlog);
1.53      brouard  4188:   }
                   4189:   ungetc(c,ficpar);
1.85      brouard  4190: 
1.53      brouard  4191:    
                   4192:   covar=matrix(0,NCOVMAX,1,n); 
1.58      lievre   4193:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
1.53      brouard  4194:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                   4195: 
1.58      lievre   4196:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
1.53      brouard  4197:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1.98      brouard  4198:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
                   4199: 
                   4200:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4201:   delti=delti3[1][1];
                   4202:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
1.88      brouard  4203:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
                   4204:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4205:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   4206:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.98      brouard  4207:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
1.88      brouard  4208:     fclose (ficparo);
                   4209:     fclose (ficlog);
                   4210:     exit(0);
                   4211:   }
1.98      brouard  4212:   else if(mle==-3) {
                   4213:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4214:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4215:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4216:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4217:     matcov=matrix(1,npar,1,npar);
1.53      brouard  4218:   }
1.98      brouard  4219:   else{
                   4220:     /* Read guess parameters */
                   4221:     /* Reads comments: lines beginning with '#' */
                   4222:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4223:       ungetc(c,ficpar);
                   4224:       fgets(line, MAXLINE, ficpar);
1.85      brouard  4225:       numlinepar++;
1.98      brouard  4226:       puts(line);
                   4227:       fputs(line,ficparo);
                   4228:       fputs(line,ficlog);
1.53      brouard  4229:     }
1.98      brouard  4230:     ungetc(c,ficpar);
                   4231:     
                   4232:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4233:     for(i=1; i <=nlstate; i++){
                   4234:       j=0;
                   4235:       for(jj=1; jj <=nlstate+ndeath; jj++){
                   4236:        if(jj==i) continue;
                   4237:        j++;
                   4238:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4239:        if ((i1 != i) && (j1 != j)){
                   4240:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4241:          exit(1);
                   4242:        }
                   4243:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4244:        if(mle==1)
                   4245:          printf("%1d%1d",i,j);
                   4246:        fprintf(ficlog,"%1d%1d",i,j);
                   4247:        for(k=1; k<=ncovmodel;k++){
                   4248:          fscanf(ficpar," %lf",&param[i][j][k]);
                   4249:          if(mle==1){
                   4250:            printf(" %lf",param[i][j][k]);
                   4251:            fprintf(ficlog," %lf",param[i][j][k]);
                   4252:          }
                   4253:          else
                   4254:            fprintf(ficlog," %lf",param[i][j][k]);
                   4255:          fprintf(ficparo," %lf",param[i][j][k]);
                   4256:        }
                   4257:        fscanf(ficpar,"\n");
                   4258:        numlinepar++;
                   4259:        if(mle==1)
                   4260:          printf("\n");
                   4261:        fprintf(ficlog,"\n");
                   4262:        fprintf(ficparo,"\n");
                   4263:       }
                   4264:     }  
                   4265:     fflush(ficlog);
1.85      brouard  4266: 
1.53      brouard  4267: 
1.98      brouard  4268:     p=param[1][1];
                   4269:     
                   4270:     /* Reads comments: lines beginning with '#' */
                   4271:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4272:       ungetc(c,ficpar);
                   4273:       fgets(line, MAXLINE, ficpar);
                   4274:       numlinepar++;
                   4275:       puts(line);
                   4276:       fputs(line,ficparo);
                   4277:       fputs(line,ficlog);
                   4278:     }
1.53      brouard  4279:     ungetc(c,ficpar);
                   4280: 
1.98      brouard  4281:     for(i=1; i <=nlstate; i++){
                   4282:       for(j=1; j <=nlstate+ndeath-1; j++){
                   4283:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4284:        if ((i1-i)*(j1-j)!=0){
                   4285:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4286:          exit(1);
                   4287:        }
                   4288:        printf("%1d%1d",i,j);
                   4289:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4290:        fprintf(ficlog,"%1d%1d",i1,j1);
                   4291:        for(k=1; k<=ncovmodel;k++){
                   4292:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   4293:          printf(" %le",delti3[i][j][k]);
                   4294:          fprintf(ficparo," %le",delti3[i][j][k]);
                   4295:          fprintf(ficlog," %le",delti3[i][j][k]);
                   4296:        }
                   4297:        fscanf(ficpar,"\n");
                   4298:        numlinepar++;
                   4299:        printf("\n");
                   4300:        fprintf(ficparo,"\n");
                   4301:        fprintf(ficlog,"\n");
1.85      brouard  4302:       }
1.53      brouard  4303:     }
1.98      brouard  4304:     fflush(ficlog);
1.85      brouard  4305: 
1.98      brouard  4306:     delti=delti3[1][1];
1.74      brouard  4307: 
                   4308: 
1.98      brouard  4309:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.53      brouard  4310:   
1.98      brouard  4311:     /* Reads comments: lines beginning with '#' */
                   4312:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4313:       ungetc(c,ficpar);
                   4314:       fgets(line, MAXLINE, ficpar);
                   4315:       numlinepar++;
                   4316:       puts(line);
                   4317:       fputs(line,ficparo);
                   4318:       fputs(line,ficlog);
                   4319:     }
1.53      brouard  4320:     ungetc(c,ficpar);
                   4321:   
1.98      brouard  4322:     matcov=matrix(1,npar,1,npar);
                   4323:     for(i=1; i <=npar; i++){
                   4324:       fscanf(ficpar,"%s",&str);
                   4325:       if(mle==1)
                   4326:        printf("%s",str);
                   4327:       fprintf(ficlog,"%s",str);
                   4328:       fprintf(ficparo,"%s",str);
                   4329:       for(j=1; j <=i; j++){
                   4330:        fscanf(ficpar," %le",&matcov[i][j]);
                   4331:        if(mle==1){
                   4332:          printf(" %.5le",matcov[i][j]);
                   4333:        }
                   4334:        fprintf(ficlog," %.5le",matcov[i][j]);
                   4335:        fprintf(ficparo," %.5le",matcov[i][j]);
1.53      brouard  4336:       }
1.98      brouard  4337:       fscanf(ficpar,"\n");
                   4338:       numlinepar++;
                   4339:       if(mle==1)
                   4340:        printf("\n");
                   4341:       fprintf(ficlog,"\n");
                   4342:       fprintf(ficparo,"\n");
1.53      brouard  4343:     }
1.98      brouard  4344:     for(i=1; i <=npar; i++)
                   4345:       for(j=i+1;j<=npar;j++)
                   4346:        matcov[i][j]=matcov[j][i];
                   4347:     
1.53      brouard  4348:     if(mle==1)
                   4349:       printf("\n");
                   4350:     fprintf(ficlog,"\n");
1.98      brouard  4351:     
                   4352:     fflush(ficlog);
                   4353:     
                   4354:     /*-------- Rewriting parameter file ----------*/
                   4355:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   4356:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   4357:     strcat(rfileres,".");    /* */
                   4358:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   4359:     if((ficres =fopen(rfileres,"w"))==NULL) {
                   4360:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
                   4361:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                   4362:     }
                   4363:     fprintf(ficres,"#%s\n",version);
                   4364:   }    /* End of mle != -3 */
1.53      brouard  4365: 
1.59      brouard  4366:   /*-------- data file ----------*/
                   4367:   if((fic=fopen(datafile,"r"))==NULL)    {
                   4368:     printf("Problem with datafile: %s\n", datafile);goto end;
                   4369:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
                   4370:   }
                   4371: 
                   4372:   n= lastobs;
                   4373:   severity = vector(1,maxwav);
                   4374:   outcome=imatrix(1,maxwav+1,1,n);
1.85      brouard  4375:   num=lvector(1,n);
1.59      brouard  4376:   moisnais=vector(1,n);
                   4377:   annais=vector(1,n);
                   4378:   moisdc=vector(1,n);
                   4379:   andc=vector(1,n);
                   4380:   agedc=vector(1,n);
                   4381:   cod=ivector(1,n);
                   4382:   weight=vector(1,n);
                   4383:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                   4384:   mint=matrix(1,maxwav,1,n);
                   4385:   anint=matrix(1,maxwav,1,n);
                   4386:   s=imatrix(1,maxwav+1,1,n);
                   4387:   tab=ivector(1,NCOVMAX);
                   4388:   ncodemax=ivector(1,8);
                   4389: 
                   4390:   i=1;
                   4391:   while (fgets(line, MAXLINE, fic) != NULL)    {
                   4392:     if ((i >= firstobs) && (i <=lastobs)) {
1.53      brouard  4393:        
1.59      brouard  4394:       for (j=maxwav;j>=1;j--){
                   4395:        cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
                   4396:        strcpy(line,stra);
                   4397:        cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4398:        cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4399:       }
1.53      brouard  4400:        
1.59      brouard  4401:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4402:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4403: 
1.59      brouard  4404:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4405:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4406: 
1.59      brouard  4407:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4408:       for (j=ncovcol;j>=1;j--){
                   4409:        cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4410:       } 
1.85      brouard  4411:       lstra=strlen(stra);
                   4412:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   4413:        stratrunc = &(stra[lstra-9]);
                   4414:        num[i]=atol(stratrunc);
                   4415:       }
                   4416:       else
                   4417:        num[i]=atol(stra);
1.53      brouard  4418:        
1.59      brouard  4419:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
1.85      brouard  4420:        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
1.53      brouard  4421: 
1.59      brouard  4422:       i=i+1;
                   4423:     }
                   4424:   }
                   4425:   /* printf("ii=%d", ij);
                   4426:      scanf("%d",i);*/
1.53      brouard  4427:   imx=i-1; /* Number of individuals */
                   4428: 
                   4429:   /* for (i=1; i<=imx; i++){
                   4430:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
                   4431:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
                   4432:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
                   4433:     }*/
                   4434:    /*  for (i=1; i<=imx; i++){
                   4435:      if (s[4][i]==9)  s[4][i]=-1; 
1.85      brouard  4436:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
1.53      brouard  4437:   
1.71      brouard  4438:  for (i=1; i<=imx; i++)
1.53      brouard  4439:  
1.71      brouard  4440:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
                   4441:      else weight[i]=1;*/
                   4442: 
1.53      brouard  4443:   /* Calculation of the number of parameter from char model*/
                   4444:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
                   4445:   Tprod=ivector(1,15); 
                   4446:   Tvaraff=ivector(1,15); 
                   4447:   Tvard=imatrix(1,15,1,2);
                   4448:   Tage=ivector(1,15);      
                   4449:    
1.58      lievre   4450:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.53      brouard  4451:     j=0, j1=0, k1=1, k2=1;
1.58      lievre   4452:     j=nbocc(model,'+'); /* j=Number of '+' */
                   4453:     j1=nbocc(model,'*'); /* j1=Number of '*' */
                   4454:     cptcovn=j+1; 
                   4455:     cptcovprod=j1; /*Number of products */
1.53      brouard  4456:     
                   4457:     strcpy(modelsav,model); 
                   4458:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
                   4459:       printf("Error. Non available option model=%s ",model);
                   4460:       fprintf(ficlog,"Error. Non available option model=%s ",model);
                   4461:       goto end;
                   4462:     }
                   4463:     
1.59      brouard  4464:     /* This loop fills the array Tvar from the string 'model'.*/
1.58      lievre   4465: 
1.53      brouard  4466:     for(i=(j+1); i>=1;i--){
                   4467:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
1.59      brouard  4468:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
1.53      brouard  4469:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   4470:       /*scanf("%d",i);*/
                   4471:       if (strchr(strb,'*')) {  /* Model includes a product */
                   4472:        cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
                   4473:        if (strcmp(strc,"age")==0) { /* Vn*age */
                   4474:          cptcovprod--;
                   4475:          cutv(strb,stre,strd,'V');
                   4476:          Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                   4477:          cptcovage++;
                   4478:            Tage[cptcovage]=i;
                   4479:            /*printf("stre=%s ", stre);*/
                   4480:        }
                   4481:        else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   4482:          cptcovprod--;
                   4483:          cutv(strb,stre,strc,'V');
                   4484:          Tvar[i]=atoi(stre);
                   4485:          cptcovage++;
                   4486:          Tage[cptcovage]=i;
                   4487:        }
                   4488:        else {  /* Age is not in the model */
                   4489:          cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                   4490:          Tvar[i]=ncovcol+k1;
                   4491:          cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                   4492:          Tprod[k1]=i;
                   4493:          Tvard[k1][1]=atoi(strc); /* m*/
                   4494:          Tvard[k1][2]=atoi(stre); /* n */
                   4495:          Tvar[cptcovn+k2]=Tvard[k1][1];
                   4496:          Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
                   4497:          for (k=1; k<=lastobs;k++) 
                   4498:            covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                   4499:          k1++;
                   4500:          k2=k2+2;
                   4501:        }
                   4502:       }
                   4503:       else { /* no more sum */
                   4504:        /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   4505:        /*  scanf("%d",i);*/
                   4506:       cutv(strd,strc,strb,'V');
                   4507:       Tvar[i]=atoi(strc);
                   4508:       }
                   4509:       strcpy(modelsav,stra);  
                   4510:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   4511:        scanf("%d",i);*/
                   4512:     } /* end of loop + */
                   4513:   } /* end model */
                   4514:   
1.58      lievre   4515:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   4516:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                   4517: 
1.53      brouard  4518:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                   4519:   printf("cptcovprod=%d ", cptcovprod);
                   4520:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
1.58      lievre   4521: 
                   4522:   scanf("%d ",i);
                   4523:   fclose(fic);*/
1.53      brouard  4524: 
                   4525:     /*  if(mle==1){*/
1.59      brouard  4526:   if (weightopt != 1) { /* Maximisation without weights*/
                   4527:     for(i=1;i<=n;i++) weight[i]=1.0;
                   4528:   }
1.53      brouard  4529:     /*-calculation of age at interview from date of interview and age at death -*/
1.59      brouard  4530:   agev=matrix(1,maxwav,1,imx);
1.53      brouard  4531: 
1.59      brouard  4532:   for (i=1; i<=imx; i++) {
                   4533:     for(m=2; (m<= maxwav); m++) {
1.76      brouard  4534:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
1.59      brouard  4535:        anint[m][i]=9999;
                   4536:        s[m][i]=-1;
                   4537:       }
1.76      brouard  4538:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.91      brouard  4539:        nberr++;
1.85      brouard  4540:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   4541:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
1.76      brouard  4542:        s[m][i]=-1;
                   4543:       }
                   4544:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.91      brouard  4545:        nberr++;
1.85      brouard  4546:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   4547:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
1.84      brouard  4548:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.76      brouard  4549:       }
1.53      brouard  4550:     }
1.59      brouard  4551:   }
1.53      brouard  4552: 
1.59      brouard  4553:   for (i=1; i<=imx; i++)  {
                   4554:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
1.71      brouard  4555:     for(m=firstpass; (m<= lastpass); m++){
1.69      brouard  4556:       if(s[m][i] >0){
1.59      brouard  4557:        if (s[m][i] >= nlstate+1) {
                   4558:          if(agedc[i]>0)
1.76      brouard  4559:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
1.69      brouard  4560:              agev[m][i]=agedc[i];
1.59      brouard  4561:          /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   4562:            else {
1.76      brouard  4563:              if ((int)andc[i]!=9999){
1.91      brouard  4564:                nbwarn++;
1.85      brouard  4565:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   4566:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
1.59      brouard  4567:                agev[m][i]=-1;
1.53      brouard  4568:              }
                   4569:            }
1.70      brouard  4570:        }
1.69      brouard  4571:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   4572:                                 years but with the precision of a
                   4573:                                 month */
1.59      brouard  4574:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.76      brouard  4575:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
1.59      brouard  4576:            agev[m][i]=1;
                   4577:          else if(agev[m][i] <agemin){ 
                   4578:            agemin=agev[m][i];
                   4579:            /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
1.53      brouard  4580:          }
1.59      brouard  4581:          else if(agev[m][i] >agemax){
                   4582:            agemax=agev[m][i];
                   4583:            /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
1.53      brouard  4584:          }
1.59      brouard  4585:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   4586:          /*     agev[m][i] = age[i]+2*m;*/
1.53      brouard  4587:        }
1.59      brouard  4588:        else { /* =9 */
1.53      brouard  4589:          agev[m][i]=1;
1.59      brouard  4590:          s[m][i]=-1;
                   4591:        }
1.53      brouard  4592:       }
1.59      brouard  4593:       else /*= 0 Unknown */
                   4594:        agev[m][i]=1;
                   4595:     }
1.53      brouard  4596:     
1.59      brouard  4597:   }
                   4598:   for (i=1; i<=imx; i++)  {
1.71      brouard  4599:     for(m=firstpass; (m<=lastpass); m++){
1.59      brouard  4600:       if (s[m][i] > (nlstate+ndeath)) {
1.91      brouard  4601:        nberr++;
1.59      brouard  4602:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4603:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4604:        goto end;
1.53      brouard  4605:       }
                   4606:     }
1.59      brouard  4607:   }
1.53      brouard  4608: 
1.71      brouard  4609:   /*for (i=1; i<=imx; i++){
                   4610:   for (m=firstpass; (m<lastpass); m++){
1.85      brouard  4611:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
1.71      brouard  4612: }
                   4613: 
                   4614: }*/
                   4615: 
1.97      lievre   4616: 
1.59      brouard  4617:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                   4618:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
                   4619: 
1.98      brouard  4620:   agegomp=(int)agemin;
1.59      brouard  4621:   free_vector(severity,1,maxwav);
                   4622:   free_imatrix(outcome,1,maxwav+1,1,n);
                   4623:   free_vector(moisnais,1,n);
                   4624:   free_vector(annais,1,n);
                   4625:   /* free_matrix(mint,1,maxwav,1,n);
                   4626:      free_matrix(anint,1,maxwav,1,n);*/
                   4627:   free_vector(moisdc,1,n);
                   4628:   free_vector(andc,1,n);
1.53      brouard  4629: 
                   4630:    
1.59      brouard  4631:   wav=ivector(1,imx);
                   4632:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4633:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4634:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
1.69      brouard  4635:    
1.59      brouard  4636:   /* Concatenates waves */
                   4637:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.53      brouard  4638: 
1.59      brouard  4639:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
1.53      brouard  4640: 
1.59      brouard  4641:   Tcode=ivector(1,100);
                   4642:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   4643:   ncodemax[1]=1;
                   4644:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
1.53      brouard  4645:       
1.59      brouard  4646:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                   4647:                                 the estimations*/
                   4648:   h=0;
                   4649:   m=pow(2,cptcoveff);
1.53      brouard  4650:  
1.59      brouard  4651:   for(k=1;k<=cptcoveff; k++){
                   4652:     for(i=1; i <=(m/pow(2,k));i++){
                   4653:       for(j=1; j <= ncodemax[k]; j++){
                   4654:        for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
                   4655:          h++;
                   4656:          if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
                   4657:          /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
                   4658:        } 
                   4659:       }
                   4660:     }
                   4661:   } 
                   4662:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                   4663:      codtab[1][2]=1;codtab[2][2]=2; */
                   4664:   /* for(i=1; i <=m ;i++){ 
                   4665:      for(k=1; k <=cptcovn; k++){
                   4666:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
                   4667:      }
                   4668:      printf("\n");
1.53      brouard  4669:      }
1.59      brouard  4670:      scanf("%d",i);*/
1.53      brouard  4671:     
1.86      brouard  4672:   /*------------ gnuplot -------------*/
                   4673:   strcpy(optionfilegnuplot,optionfilefiname);
1.98      brouard  4674:   if(mle==-3)
                   4675:     strcat(optionfilegnuplot,"-mort");
1.86      brouard  4676:   strcat(optionfilegnuplot,".gp");
1.98      brouard  4677: 
1.86      brouard  4678:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   4679:     printf("Problem with file %s",optionfilegnuplot);
                   4680:   }
                   4681:   else{
                   4682:     fprintf(ficgp,"\n# %s\n", version); 
                   4683:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
                   4684:     fprintf(ficgp,"set missing 'NaNq'\n");
                   4685:   }
1.88      brouard  4686:   /*  fclose(ficgp);*/
1.86      brouard  4687:   /*--------- index.htm --------*/
                   4688: 
1.91      brouard  4689:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
1.98      brouard  4690:   if(mle==-3)
                   4691:     strcat(optionfilehtm,"-mort");
1.86      brouard  4692:   strcat(optionfilehtm,".htm");
                   4693:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
                   4694:     printf("Problem with %s \n",optionfilehtm), exit(0);
                   4695:   }
                   4696: 
1.91      brouard  4697:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   4698:   strcat(optionfilehtmcov,"-cov.htm");
                   4699:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   4700:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   4701:   }
                   4702:   else{
                   4703:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
                   4704: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4705: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                   4706:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   4707:   }
                   4708: 
1.87      brouard  4709:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
1.86      brouard  4710: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4711: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   4712: \n\
                   4713: <hr  size=\"2\" color=\"#EC5E5E\">\
                   4714:  <ul><li><h4>Parameter files</h4>\n\
                   4715:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   4716:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
1.87      brouard  4717:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
1.86      brouard  4718:  - Date and time at start: %s</ul>\n",\
1.91      brouard  4719:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   4720:          fileres,fileres,\
1.88      brouard  4721:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
1.87      brouard  4722:   fflush(fichtm);
1.86      brouard  4723: 
1.88      brouard  4724:   strcpy(pathr,path);
                   4725:   strcat(pathr,optionfilefiname);
                   4726:   chdir(optionfilefiname); /* Move to directory named optionfile */
                   4727:   
1.59      brouard  4728:   /* Calculates basic frequencies. Computes observed prevalence at single age
                   4729:      and prints on file fileres'p'. */
1.84      brouard  4730:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
1.53      brouard  4731: 
1.88      brouard  4732:   fprintf(fichtm,"\n");
                   4733:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
1.86      brouard  4734: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   4735: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.88      brouard  4736:          imx,agemin,agemax,jmin,jmax,jmean);
                   4737:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.60      brouard  4738:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4739:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4740:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4741:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.53      brouard  4742:     
                   4743:    
1.59      brouard  4744:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   4745:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   4746:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.53      brouard  4747: 
1.86      brouard  4748:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.98      brouard  4749:   if (mle==-3){
                   4750:     ximort=matrix(1,NDIM,1,NDIM);
                   4751:     cens=ivector(1,n);
                   4752:     ageexmed=vector(1,n);
                   4753:     agecens=vector(1,n);
                   4754:     dcwave=ivector(1,n);
                   4755:  
                   4756:     for (i=1; i<=imx; i++){
                   4757:       dcwave[i]=-1;
                   4758:       for (j=1; j<=lastpass; j++)
                   4759:        if (s[j][i]>nlstate) {
                   4760:          dcwave[i]=j;
                   4761:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   4762:          break;
                   4763:        }
                   4764:     }
                   4765: 
                   4766:     for (i=1; i<=imx; i++) {
                   4767:       if (wav[i]>0){
                   4768:        ageexmed[i]=agev[mw[1][i]][i];
                   4769:        j=wav[i];agecens[i]=1.; 
                   4770:        if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
                   4771:        cens[i]=1;
                   4772:        
                   4773:        if (ageexmed[i]<1) cens[i]=-1;
                   4774:        if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
                   4775:       }
                   4776:       else cens[i]=-1;
                   4777:     }
                   4778:     
                   4779:     for (i=1;i<=NDIM;i++) {
                   4780:       for (j=1;j<=NDIM;j++)
                   4781:        ximort[i][j]=(i == j ? 1.0 : 0.0);
                   4782:     }
                   4783: 
                   4784:     p[1]=0.1; p[2]=0.1;
                   4785:     /*printf("%lf %lf", p[1], p[2]);*/
                   4786:     
                   4787:     
                   4788:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   4789:   strcpy(filerespow,"pow-mort"); 
                   4790:   strcat(filerespow,fileres);
                   4791:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   4792:     printf("Problem with resultfile: %s\n", filerespow);
                   4793:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
1.59      brouard  4794:   }
1.98      brouard  4795:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   4796:   /*  for (i=1;i<=nlstate;i++)
                   4797:     for(j=1;j<=nlstate+ndeath;j++)
                   4798:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   4799:   */
                   4800:   fprintf(ficrespow,"\n");
                   4801: 
                   4802:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   4803:     fclose(ficrespow);
1.53      brouard  4804:     
1.98      brouard  4805:     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
1.53      brouard  4806: 
1.98      brouard  4807:     for(i=1; i <=NDIM; i++)
                   4808:       for(j=i+1;j<=NDIM;j++)
                   4809:        matcov[i][j]=matcov[j][i];
                   4810:     
                   4811:     printf("\nCovariance matrix\n ");
                   4812:     for(i=1; i <=NDIM; i++) {
                   4813:       for(j=1;j<=NDIM;j++){ 
                   4814:        printf("%f ",matcov[i][j]);
1.95      brouard  4815:       }
1.98      brouard  4816:       printf("\n ");
                   4817:     }
                   4818:     
                   4819:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
                   4820:     for (i=1;i<=NDIM;i++) 
                   4821:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   4822:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   4823:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   4824:     
                   4825:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                   4826:                     stepm, weightopt,\
                   4827:                     model,imx,p,matcov);
                   4828:   } /* Endof if mle==-3 */
                   4829: 
                   4830:   else{ /* For mle >=1 */
                   4831:   
                   4832:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4833:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4834:     for (k=1; k<=npar;k++)
                   4835:       printf(" %d %8.5f",k,p[k]);
                   4836:     printf("\n");
                   4837:     globpr=1; /* to print the contributions */
                   4838:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4839:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4840:     for (k=1; k<=npar;k++)
                   4841:       printf(" %d %8.5f",k,p[k]);
                   4842:     printf("\n");
                   4843:     if(mle>=1){ /* Could be 1 or 2 */
                   4844:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.59      brouard  4845:     }
1.98      brouard  4846:     
                   4847:     /*--------- results files --------------*/
                   4848:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
                   4849:     
                   4850:     
                   4851:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4852:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4853:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4854:     for(i=1,jk=1; i <=nlstate; i++){
                   4855:       for(k=1; k <=(nlstate+ndeath); k++){
                   4856:        if (k != i) {
                   4857:          printf("%d%d ",i,k);
                   4858:          fprintf(ficlog,"%d%d ",i,k);
                   4859:          fprintf(ficres,"%1d%1d ",i,k);
                   4860:          for(j=1; j <=ncovmodel; j++){
                   4861:            printf("%f ",p[jk]);
                   4862:            fprintf(ficlog,"%f ",p[jk]);
                   4863:            fprintf(ficres,"%f ",p[jk]);
                   4864:            jk++; 
                   4865:          }
                   4866:          printf("\n");
                   4867:          fprintf(ficlog,"\n");
                   4868:          fprintf(ficres,"\n");
1.59      brouard  4869:        }
                   4870:       }
                   4871:     }
1.98      brouard  4872:     if(mle!=0){
                   4873:       /* Computing hessian and covariance matrix */
                   4874:       ftolhess=ftol; /* Usually correct */
                   4875:       hesscov(matcov, p, npar, delti, ftolhess, func);
                   4876:     }
                   4877:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   4878:     printf("# Scales (for hessian or gradient estimation)\n");
                   4879:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   4880:     for(i=1,jk=1; i <=nlstate; i++){
1.95      brouard  4881:       for(j=1; j <=nlstate+ndeath; j++){
1.98      brouard  4882:        if (j!=i) {
                   4883:          fprintf(ficres,"%1d%1d",i,j);
                   4884:          printf("%1d%1d",i,j);
                   4885:          fprintf(ficlog,"%1d%1d",i,j);
                   4886:          for(k=1; k<=ncovmodel;k++){
                   4887:            printf(" %.5e",delti[jk]);
                   4888:            fprintf(ficlog," %.5e",delti[jk]);
                   4889:            fprintf(ficres," %.5e",delti[jk]);
                   4890:            jk++;
1.95      brouard  4891:          }
1.98      brouard  4892:          printf("\n");
                   4893:          fprintf(ficlog,"\n");
                   4894:          fprintf(ficres,"\n");
                   4895:        }
                   4896:       }
                   4897:     }
                   4898:     
                   4899:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4900:     if(mle>=1)
                   4901:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4902:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4903:     /* # 121 Var(a12)\n\ */
                   4904:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4905:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   4906:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   4907:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   4908:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   4909:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   4910:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   4911:     
                   4912:     
                   4913:     /* Just to have a covariance matrix which will be more understandable
                   4914:        even is we still don't want to manage dictionary of variables
                   4915:     */
                   4916:     for(itimes=1;itimes<=2;itimes++){
                   4917:       jj=0;
                   4918:       for(i=1; i <=nlstate; i++){
                   4919:        for(j=1; j <=nlstate+ndeath; j++){
                   4920:          if(j==i) continue;
                   4921:          for(k=1; k<=ncovmodel;k++){
                   4922:            jj++;
                   4923:            ca[0]= k+'a'-1;ca[1]='\0';
                   4924:            if(itimes==1){
                   4925:              if(mle>=1)
                   4926:                printf("#%1d%1d%d",i,j,k);
                   4927:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   4928:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   4929:            }else{
                   4930:              if(mle>=1)
                   4931:                printf("%1d%1d%d",i,j,k);
                   4932:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   4933:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   4934:            }
                   4935:            ll=0;
                   4936:            for(li=1;li <=nlstate; li++){
                   4937:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   4938:                if(lj==li) continue;
                   4939:                for(lk=1;lk<=ncovmodel;lk++){
                   4940:                  ll++;
                   4941:                  if(ll<=jj){
                   4942:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   4943:                    if(ll<jj){
                   4944:                      if(itimes==1){
                   4945:                        if(mle>=1)
                   4946:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4947:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4948:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4949:                      }else{
                   4950:                        if(mle>=1)
                   4951:                          printf(" %.5e",matcov[jj][ll]); 
                   4952:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   4953:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   4954:                      }
1.95      brouard  4955:                    }else{
1.98      brouard  4956:                      if(itimes==1){
                   4957:                        if(mle>=1)
                   4958:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   4959:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   4960:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   4961:                      }else{
                   4962:                        if(mle>=1)
                   4963:                          printf(" %.5e",matcov[jj][ll]); 
                   4964:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   4965:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   4966:                      }
1.95      brouard  4967:                    }
                   4968:                  }
1.98      brouard  4969:                } /* end lk */
                   4970:              } /* end lj */
                   4971:            } /* end li */
                   4972:            if(mle>=1)
                   4973:              printf("\n");
                   4974:            fprintf(ficlog,"\n");
                   4975:            fprintf(ficres,"\n");
                   4976:            numlinepar++;
                   4977:          } /* end k*/
                   4978:        } /*end j */
                   4979:       } /* end i */
                   4980:     } /* end itimes */
                   4981:     
                   4982:     fflush(ficlog);
                   4983:     fflush(ficres);
                   4984:     
                   4985:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4986:       ungetc(c,ficpar);
                   4987:       fgets(line, MAXLINE, ficpar);
                   4988:       puts(line);
                   4989:       fputs(line,ficparo);
                   4990:     }
1.59      brouard  4991:     ungetc(c,ficpar);
1.98      brouard  4992:     
                   4993:     estepm=0;
                   4994:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                   4995:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   4996:     if (fage <= 2) {
                   4997:       bage = ageminpar;
                   4998:       fage = agemaxpar;
                   4999:     }
                   5000:     
                   5001:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
                   5002:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5003:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5004:     
                   5005:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5006:       ungetc(c,ficpar);
                   5007:       fgets(line, MAXLINE, ficpar);
                   5008:       puts(line);
                   5009:       fputs(line,ficparo);
                   5010:     }
1.59      brouard  5011:     ungetc(c,ficpar);
1.98      brouard  5012:     
                   5013:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   5014:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5015:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5016:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5017:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5018:     
                   5019:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5020:       ungetc(c,ficpar);
                   5021:       fgets(line, MAXLINE, ficpar);
                   5022:       puts(line);
                   5023:       fputs(line,ficparo);
                   5024:     }
1.59      brouard  5025:     ungetc(c,ficpar);
1.98      brouard  5026:     
                   5027:     
                   5028:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   5029:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   5030:     
                   5031:     fscanf(ficpar,"pop_based=%d\n",&popbased);
                   5032:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   5033:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   5034:     
                   5035:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5036:       ungetc(c,ficpar);
                   5037:       fgets(line, MAXLINE, ficpar);
                   5038:       puts(line);
                   5039:       fputs(line,ficparo);
                   5040:     }
1.53      brouard  5041:     ungetc(c,ficpar);
1.98      brouard  5042:     
                   5043:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   5044:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5045:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5046:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5047:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5048:     /* day and month of proj2 are not used but only year anproj2.*/
                   5049:     
                   5050:     
                   5051:     
                   5052:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
                   5053:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   5054:     
                   5055:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   5056:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   5057:     
                   5058:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                   5059:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                   5060:                 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
                   5061:       
                   5062:    /*------------ free_vector  -------------*/
                   5063:    /*  chdir(path); */
1.53      brouard  5064:  
1.98      brouard  5065:     free_ivector(wav,1,imx);
                   5066:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
                   5067:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                   5068:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
                   5069:     free_lvector(num,1,n);
                   5070:     free_vector(agedc,1,n);
                   5071:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   5072:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   5073:     fclose(ficparo);
                   5074:     fclose(ficres);
                   5075: 
                   5076: 
                   5077:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
                   5078:   
                   5079:     strcpy(filerespl,"pl");
                   5080:     strcat(filerespl,fileres);
                   5081:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
                   5082:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5083:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5084:     }
                   5085:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
                   5086:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
                   5087:     fprintf(ficrespl,"#Stable prevalence \n");
                   5088:     fprintf(ficrespl,"#Age ");
                   5089:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   5090:     fprintf(ficrespl,"\n");
                   5091:   
                   5092:     prlim=matrix(1,nlstate,1,nlstate);
                   5093: 
                   5094:     agebase=ageminpar;
                   5095:     agelim=agemaxpar;
                   5096:     ftolpl=1.e-10;
                   5097:     i1=cptcoveff;
                   5098:     if (cptcovn < 1){i1=1;}
                   5099: 
                   5100:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5101:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5102:        k=k+1;
                   5103:        /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
                   5104:        fprintf(ficrespl,"\n#******");
                   5105:        printf("\n#******");
                   5106:        fprintf(ficlog,"\n#******");
                   5107:        for(j=1;j<=cptcoveff;j++) {
                   5108:          fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5109:          printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5110:          fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5111:        }
                   5112:        fprintf(ficrespl,"******\n");
                   5113:        printf("******\n");
                   5114:        fprintf(ficlog,"******\n");
1.53      brouard  5115:        
1.98      brouard  5116:        for (age=agebase; age<=agelim; age++){
                   5117:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5118:          fprintf(ficrespl,"%.0f ",age );
                   5119:          for(j=1;j<=cptcoveff;j++)
                   5120:            fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5121:          for(i=1; i<=nlstate;i++)
                   5122:            fprintf(ficrespl," %.5f", prlim[i][i]);
                   5123:          fprintf(ficrespl,"\n");
                   5124:        }
1.53      brouard  5125:       }
                   5126:     }
1.98      brouard  5127:     fclose(ficrespl);
1.53      brouard  5128: 
1.98      brouard  5129:     /*------------- h Pij x at various ages ------------*/
1.53      brouard  5130:   
1.98      brouard  5131:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
                   5132:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   5133:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5134:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5135:     }
                   5136:     printf("Computing pij: result on file '%s' \n", filerespij);
                   5137:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
1.53      brouard  5138:   
1.98      brouard  5139:     stepsize=(int) (stepm+YEARM-1)/YEARM;
                   5140:     /*if (stepm<=24) stepsize=2;*/
1.53      brouard  5141: 
1.98      brouard  5142:     agelim=AGESUP;
                   5143:     hstepm=stepsize*YEARM; /* Every year of age */
                   5144:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
1.53      brouard  5145: 
1.98      brouard  5146:     /* hstepm=1;   aff par mois*/
1.53      brouard  5147: 
1.98      brouard  5148:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   5149:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5150:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5151:        k=k+1;
                   5152:        fprintf(ficrespij,"\n#****** ");
                   5153:        for(j=1;j<=cptcoveff;j++) 
                   5154:          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5155:        fprintf(ficrespij,"******\n");
1.53      brouard  5156:        
1.98      brouard  5157:        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   5158:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   5159:          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1.59      brouard  5160: 
1.98      brouard  5161:          /*      nhstepm=nhstepm*YEARM; aff par mois*/
1.59      brouard  5162: 
1.98      brouard  5163:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5164:          oldm=oldms;savm=savms;
                   5165:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   5166:          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
1.53      brouard  5167:          for(i=1; i<=nlstate;i++)
                   5168:            for(j=1; j<=nlstate+ndeath;j++)
1.98      brouard  5169:              fprintf(ficrespij," %1d-%1d",i,j);
                   5170:          fprintf(ficrespij,"\n");
                   5171:          for (h=0; h<=nhstepm; h++){
                   5172:            fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
                   5173:            for(i=1; i<=nlstate;i++)
                   5174:              for(j=1; j<=nlstate+ndeath;j++)
                   5175:                fprintf(ficrespij," %.5f", p3mat[i][j][h]);
                   5176:            fprintf(ficrespij,"\n");
                   5177:          }
                   5178:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.53      brouard  5179:          fprintf(ficrespij,"\n");
                   5180:        }
1.59      brouard  5181:       }
1.53      brouard  5182:     }
                   5183: 
1.98      brouard  5184:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
1.53      brouard  5185: 
1.98      brouard  5186:     fclose(ficrespij);
1.53      brouard  5187: 
1.98      brouard  5188:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5189:     for(i=1;i<=AGESUP;i++)
                   5190:       for(j=1;j<=NCOVMAX;j++)
                   5191:        for(k=1;k<=NCOVMAX;k++)
                   5192:          probs[i][j][k]=0.;
                   5193: 
                   5194:     /*---------- Forecasting ------------------*/
                   5195:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   5196:     if(prevfcast==1){
                   5197:       /*    if(stepm ==1){*/
1.70      brouard  5198:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
1.74      brouard  5199:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
1.98      brouard  5200:       /*      }  */
                   5201:       /*      else{ */
                   5202:       /*        erreur=108; */
                   5203:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5204:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5205:       /*      } */
                   5206:     }
1.53      brouard  5207:   
                   5208: 
1.98      brouard  5209:     /*---------- Health expectancies and variances ------------*/
1.53      brouard  5210: 
1.98      brouard  5211:     strcpy(filerest,"t");
                   5212:     strcat(filerest,fileres);
                   5213:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   5214:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   5215:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   5216:     }
                   5217:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
                   5218:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
1.53      brouard  5219: 
                   5220: 
1.98      brouard  5221:     strcpy(filerese,"e");
                   5222:     strcat(filerese,fileres);
                   5223:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   5224:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5225:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5226:     }
                   5227:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
                   5228:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
1.68      lievre   5229: 
1.98      brouard  5230:     strcpy(fileresv,"v");
                   5231:     strcat(fileresv,fileres);
                   5232:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   5233:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5234:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5235:     }
                   5236:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   5237:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
1.58      lievre   5238: 
1.98      brouard  5239:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
                   5240:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   5241:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   5242:        ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
                   5243:     */
1.58      lievre   5244: 
1.98      brouard  5245:     if (mobilav!=0) {
                   5246:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5247:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   5248:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   5249:        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   5250:       }
1.54      brouard  5251:     }
1.53      brouard  5252: 
1.98      brouard  5253:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5254:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5255:        k=k+1; 
                   5256:        fprintf(ficrest,"\n#****** ");
                   5257:        for(j=1;j<=cptcoveff;j++) 
                   5258:          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5259:        fprintf(ficrest,"******\n");
                   5260: 
                   5261:        fprintf(ficreseij,"\n#****** ");
                   5262:        for(j=1;j<=cptcoveff;j++) 
                   5263:          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5264:        fprintf(ficreseij,"******\n");
                   5265: 
                   5266:        fprintf(ficresvij,"\n#****** ");
                   5267:        for(j=1;j<=cptcoveff;j++) 
                   5268:          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5269:        fprintf(ficresvij,"******\n");
                   5270: 
                   5271:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5272:        oldm=oldms;savm=savms;
                   5273:        evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
1.53      brouard  5274:  
1.98      brouard  5275:        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5276:        oldm=oldms;savm=savms;
                   5277:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
                   5278:        if(popbased==1){
                   5279:          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
                   5280:        }
1.53      brouard  5281: 
                   5282:  
1.98      brouard  5283:        fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
                   5284:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   5285:        fprintf(ficrest,"\n");
                   5286: 
                   5287:        epj=vector(1,nlstate+1);
                   5288:        for(age=bage; age <=fage ;age++){
                   5289:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5290:          if (popbased==1) {
                   5291:            if(mobilav ==0){
                   5292:              for(i=1; i<=nlstate;i++)
                   5293:                prlim[i][i]=probs[(int)age][i][k];
                   5294:            }else{ /* mobilav */ 
                   5295:              for(i=1; i<=nlstate;i++)
                   5296:                prlim[i][i]=mobaverage[(int)age][i][k];
                   5297:            }
1.53      brouard  5298:          }
                   5299:        
1.98      brouard  5300:          fprintf(ficrest," %4.0f",age);
                   5301:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   5302:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   5303:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   5304:              /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   5305:            }
                   5306:            epj[nlstate+1] +=epj[j];
1.53      brouard  5307:          }
                   5308: 
1.98      brouard  5309:          for(i=1, vepp=0.;i <=nlstate;i++)
                   5310:            for(j=1;j <=nlstate;j++)
                   5311:              vepp += vareij[i][j][(int)age];
                   5312:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   5313:          for(j=1;j <=nlstate;j++){
                   5314:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   5315:          }
                   5316:          fprintf(ficrest,"\n");
1.53      brouard  5317:        }
1.98      brouard  5318:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5319:        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5320:        free_vector(epj,1,nlstate+1);
                   5321:       }
                   5322:     }
                   5323:     free_vector(weight,1,n);
                   5324:     free_imatrix(Tvard,1,15,1,2);
                   5325:     free_imatrix(s,1,maxwav+1,1,n);
                   5326:     free_matrix(anint,1,maxwav,1,n); 
                   5327:     free_matrix(mint,1,maxwav,1,n);
                   5328:     free_ivector(cod,1,n);
                   5329:     free_ivector(tab,1,NCOVMAX);
                   5330:     fclose(ficreseij);
                   5331:     fclose(ficresvij);
                   5332:     fclose(ficrest);
                   5333:     fclose(ficpar);
                   5334:   
                   5335:     /*------- Variance of stable prevalence------*/   
                   5336: 
                   5337:     strcpy(fileresvpl,"vpl");
                   5338:     strcat(fileresvpl,fileres);
                   5339:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   5340:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
                   5341:       exit(0);
                   5342:     }
                   5343:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
                   5344: 
                   5345:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5346:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5347:        k=k+1;
                   5348:        fprintf(ficresvpl,"\n#****** ");
                   5349:        for(j=1;j<=cptcoveff;j++) 
                   5350:          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5351:        fprintf(ficresvpl,"******\n");
                   5352:       
                   5353:        varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   5354:        oldm=oldms;savm=savms;
                   5355:        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
                   5356:        free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.53      brouard  5357:       }
1.98      brouard  5358:     }
1.53      brouard  5359: 
1.98      brouard  5360:     fclose(ficresvpl);
1.53      brouard  5361: 
1.98      brouard  5362:     /*---------- End : free ----------------*/
                   5363:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5364:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5365: 
                   5366:   }  /* mle==-3 arrives here for freeing */
                   5367:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
                   5368:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5369:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5370:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5371:   
                   5372:     free_matrix(covar,0,NCOVMAX,1,n);
                   5373:     free_matrix(matcov,1,npar,1,npar);
                   5374:     /*free_vector(delti,1,npar);*/
                   5375:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   5376:     free_matrix(agev,1,maxwav,1,imx);
                   5377:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   5378: 
                   5379:     free_ivector(ncodemax,1,8);
                   5380:     free_ivector(Tvar,1,15);
                   5381:     free_ivector(Tprod,1,15);
                   5382:     free_ivector(Tvaraff,1,15);
                   5383:     free_ivector(Tage,1,15);
                   5384:     free_ivector(Tcode,1,100);
1.74      brouard  5385: 
1.53      brouard  5386: 
1.88      brouard  5387:   fflush(fichtm);
                   5388:   fflush(ficgp);
1.53      brouard  5389:   
                   5390: 
1.91      brouard  5391:   if((nberr >0) || (nbwarn>0)){
1.95      brouard  5392:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
1.91      brouard  5393:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
1.53      brouard  5394:   }else{
1.91      brouard  5395:     printf("End of Imach\n");
                   5396:     fprintf(ficlog,"End of Imach\n");
1.53      brouard  5397:   }
                   5398:   printf("See log file on %s\n",filelog);
                   5399:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.85      brouard  5400:   (void) gettimeofday(&end_time,&tzp);
                   5401:   tm = *localtime(&end_time.tv_sec);
                   5402:   tmg = *gmtime(&end_time.tv_sec);
1.88      brouard  5403:   strcpy(strtend,asctime(&tm));
1.94      brouard  5404:   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
                   5405:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.91      brouard  5406:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
1.85      brouard  5407: 
1.91      brouard  5408:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
                   5409:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
                   5410:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
1.85      brouard  5411:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
1.87      brouard  5412: /*   if(fileappend(fichtm,optionfilehtm)){ */
1.88      brouard  5413:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
1.87      brouard  5414:   fclose(fichtm);
1.91      brouard  5415:   fclose(fichtmcov);
1.88      brouard  5416:   fclose(ficgp);
1.91      brouard  5417:   fclose(ficlog);
1.53      brouard  5418:   /*------ End -----------*/
                   5419: 
1.88      brouard  5420:   chdir(path);
1.99    ! brouard  5421:   strcpy(plotcmd,"\"");
        !          5422:   strcat(plotcmd,pathimach);
        !          5423:   strcat(plotcmd,GNUPLOTPROGRAM);
        !          5424:   strcat(plotcmd,"\"");
1.59      brouard  5425:   strcat(plotcmd," ");
                   5426:   strcat(plotcmd,optionfilegnuplot);
1.75      brouard  5427:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
1.91      brouard  5428:   if((outcmd=system(plotcmd)) != 0){
                   5429:     printf(" Problem with gnuplot\n");
                   5430:   }
1.75      brouard  5431:   printf(" Wait...");
1.53      brouard  5432:   while (z[0] != 'q') {
                   5433:     /* chdir(path); */
1.91      brouard  5434:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
1.53      brouard  5435:     scanf("%s",z);
1.91      brouard  5436: /*     if (z[0] == 'c') system("./imach"); */
1.99    ! brouard  5437:     if (z[0] == 'e') {
        !          5438:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
        !          5439:       system(optionfilehtm);
        !          5440:     }
1.53      brouard  5441:     else if (z[0] == 'g') system(plotcmd);
                   5442:     else if (z[0] == 'q') exit(0);
                   5443:   }
1.91      brouard  5444:   end:
                   5445:   while (z[0] != 'q') {
                   5446:     printf("\nType  q for exiting: ");
                   5447:     scanf("%s",z);
                   5448:   }
1.53      brouard  5449: }
1.88      brouard  5450: 
1.53      brouard  5451: 
                   5452: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>