COMMENT: RANDOM NUMBER GENERATOR
***********************
PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1),
RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
DECLARATIONS OF RAN1, RAN2 AND RAN3 MUST BE GLOBAL,
THE ALGORITHM RETURNS X(N)/2**56, WHERE
X(N) = X(N-1) + X(N-127) (MOO 2**56),
SINCE 1 + X + X**127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT
LEAST 2**127 - 1 > 10**38, SEE KNUTH (1969), PP. 26, 34, 464,
X(N) IS STORED IN A LONG REAL WORD AS
RAN3 = X(N)/2**56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
IS EXACT;
LONG REAL PROCEDURE RANDOM(INTEGER VALUE NAUGHT);
BEGIN
LONG REAL RAN1; INTEGER RAN2; LONG REAL ARRAY RAN3 (0::126);
INTEGER R; LOGICAL INIT;
INIT := FALSE;
IF INIT THEN GO TO L3;
R := ABS(NAUGHT) REM 8190 + 1;
RAN2 := 127; WHILE RAN2 > 0 DO
BEGIN RAN2 := RAN2 - 1; RAN1 := -2L**55;
FOR I := 1 UNTIL 7 DO
BEGIN R := (1756*R) REM 8191;
RAN1 := (RAN1 + (R DIV 32) )*( 1/256) ;
END;
RAN3 (RAN2) := RAN1
END;
INIT := TRUE;
L3: RAN2 := IF RAN2 = 0 THEN 126 ELSE RAN2 - 1;
RAN1 := RAN1 + RAN3 (RAN2);
RAN3 (RAN2) := RAN1 := IF RAN1 < 0L THEN RAN1 + 0.5L
ELSE RAN1 - 0.5L;
RAN1 + 0.5L
END RANDOM.
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>