Annotation of imach/src/simulation.R, revision 1.2
1.2 ! brouard 1: # $Id: simulation.r,v 1.358 2023/06/14 14:57:02 brouard Exp $
! 2: # $State: Exp $
! 3: #
1.1 brouard 4: # Simulating data for IMaCh tests
5: # Feinuo Sun and Nicolas Brouard (INED, July 2023)
6: #
7: install.packages("dplyr")
8: if(!require("tidyverse")){
9: install.packages("tidyverse",repos="http://cran.r-project.org")
10: # install.packages("tidyverse")
11: require("tidyverse")
12: }
13: # LIBRARIES
14: library(haven)
1.2 ! brouard 15: #samplesize<- 10000
! 16: samplesize<- 50000
1.1 brouard 17:
18: # Which Life table?
19: # Simulating a gompertz law of mortality: slope of line mu_m (about 9% increase per year)
20: # and a_m, modal age at death. From whose we can compute the life expectancy e_65.
21:
22: install.packages("expint",repos="http://cran.r-project.org")
23: library(expint)
24: am <- 85
25: mum <- 9/100
26: expint(exp(mum*(65-am)))
27: am <- 84.8506
28: exp(exp(mum*(65-am)))/mum*expint(exp(mum*(65-am)))
29: # e(65) = 18.10904 years
30: e65 <- exp(exp(mum*(65-am)))/mum*expint(exp(mum*(65-am)))
31:
32: e65 <- exp(exp(mum*(65-am)))/mum*expint(exp(mum*(65-am)))
1.2 ! brouard 33: e65
! 34: # Life table from 0
1.1 brouard 35: l <- function(a,am,mum){
36: exp(-exp(mum*(a-am)))/exp(-exp(-mum*am))
37: }
38: l65 <- function(a,am,mum){
39: exp(-exp(mum*(a-am)))/exp(-exp(mum*(65-am)))
40: }
41: l65(65,am,mum)
42: #l65<-l(65,am,mum) # 0.84
43: l65(100,am,mum)
44:
45: #curve(l65(x,am,mum), from = 65, to = 100)
46: # Add a line:
47: #curve(1 - l65(x,am,mum), add = TRUE, col = "red")
48:
49: # inverse function from l(a) find a.
50: linv <- function(la,am,mum){
51: am+log(exp(-mum*am) -log(la))/mum
52: }
53: linv(0.001,am,mum)
54: linv(1,am,mum)
55:
56: l65inv <- function(la,am,mum){
57: am+log(exp(mum*(65-am)) -log(la))/mum
58: }
59: l65inv(0.001,am,mum)
60: l65inv(1,am,mum)
61:
62: am
63: mum
64: l65bisinv <- function(la){
65: 84.8506+log(exp(0.09*(65-84.8506)) -log(la))/0.09
66: }
1.2 ! brouard 67: l65bisinv(0.0001)
1.1 brouard 68: l65bisinv(1)
69:
70: set.seed(128)
1.2 ! brouard 71: zeroone<-runif(samplesize,min=0.00000001,max=1)
1.1 brouard 72: zeroone<-runif(samplesize,min=0.001,max=1)
73: lifelength <- lapply(zeroone,l65bisinv)
1.2 ! brouard 74: #slife<- sort(unlist(lifelength),decreasing=TRUE)
! 75: #?sort
! 76: #head(slife)
! 77: #mean(unlist(lifelength)-65) #17.99482
! 78: #head(lifelength,10)
! 79: #class(lifelength)
1.1 brouard 80:
81: #lifelength <- rnorm(n=samplesize, mean=85, sd=16)
82:
83: set.seed(124)
84: # First interview 4th semester
1.2 ! brouard 85: monthinterview <- runif(samplesize, min=10,max=13)
1.1 brouard 86: st_98 <- rbinom(n=samplesize, size=1, prob=0.5)+1
87: # state 2
88: st_00 <- rbinom(n=samplesize, size=1, prob=0.2)+1
89: # date of birth (simulating population in 1998 age 65+), uniformly?
90: popage65110in1998<- runif(samplesize, min=65, max=110)
91: #gender
92: ragender <- rbinom(n=samplesize, size=1, prob=0.56)
93:
1.2 ! brouard 94: r98iwmid <- 1998 + monthinterview/12
1.1 brouard 95: yrinterview1 <- floor(r98iwmid)
1.2 ! brouard 96: #monthinw1 <- floor((monthinterview - floor(monthinterview))*12)+1
! 97: monthinw1 <- floor(monthinterview)
! 98:
1.1 brouard 99:
100: int_98 <- paste0(monthinw1,"/",yrinterview1)
101:
102: rabdate <- r98iwmid - popage65110in1998
103: birthyr <- floor(rabdate)
104: monthdb <- floor((rabdate - floor(rabdate))*12)+1
105: brt <- paste0(monthdb,"/",birthyr)
106: # date of death for dropping cases
1.2 ! brouard 107: #raddate <- rabdate + lifelength
! 108: raddate <- rabdate + unlist(lifelength)
1.1 brouard 109: dateinterview2 <- 1998 + 2 + monthinterview/12
110: #head(cbind(r98iwmid,dateinterview2,raddate),70)
111: # people whose death occured before the interview will be dropped (radnate)
112: radndate <- if_else(raddate < r98iwmid, NA, raddate )
1.2 ! brouard 113: head(cbind(r98iwmid,dateinterview2,raddate,radndate,lifelength),n=5299)
1.1 brouard 114: #head(cbind(r98iwmid,dateinterview2,raddate,radndate,lifelength),70)
115: # in order to avoid date of death known after last wave and potential bias
116: # people whose death will occur after last interview will have an unkwonn (99/9999) date of death
117: lastinterview<- dateinterview2
1.2 ! brouard 118: radldate<- if_else(radndate > dateinterview2+1/12, 9999, radndate )
! 119: head(cbind(r98iwmid,dateinterview2,raddate,radndate,lifelength,radldate),n=5299)
! 120: radldate<- if_else(dateinterview2+1/12 > radndate & radndate > dateinterview2, radndate , radldate )
! 121: head(cbind(r98iwmid,dateinterview2,raddate,radndate,lifelength,radldate),n=5299)
1.1 brouard 122: ddtyr <- if_else((!is.na(radldate) & radldate ==9999), 9999, floor(radldate))
123: monthdd <- if_else((!is.na(radldate) & radldate ==9999), 99,floor((radldate - floor(radldate))*12)+1)
124: #head(cbind(r98iwmid,dateinterview2,raddate,lifelength,radldate,ddtyr,monthdd),70)
125: ddt <- if_else(!is.na(radldate),paste0(monthdd,"/",ddtyr), NA)
126: #head(cbind(r98iwmid,dateinterview2,raddate,lifelength,radldate,ddt),70)
127: weight <- rep(1, samplesize)
128: # state 1 st_98
129: ageatinterview1 <- r98iwmid - rabdate
130: # interview 2 st 2000
131: # same month of interview
132: yrinterview2 <- floor(dateinterview2)
133: monthinw2 <- floor((dateinterview2 - floor(dateinterview2))*12)+1
134: int_00 <- paste0(monthinw2,"/",yrinterview2)
1.2 ! brouard 135: #head(cbind(r98iwmid,dateinterview2,int_00,raddate,radndate,lifelength,radldate),70)
1.1 brouard 136: ageatinterview2 <- dateinterview2 - rabdate
137: # state 2
138: st_00 <- if_else(raddate < dateinterview2, 3, st_00)
139: hhidpn <- seq(1,samplesize)
140: HRSSIMULdata <- data.frame(hhidpn,ragender, weight, brt, ddt, int_98, st_98, int_00, st_00)
141: head(HRSSIMULdata,70)
142:
143: HRSSIMULdata <- HRSSIMULdata %>% filter(!is.na(ddt))
144: HRSSIMULdata <- HRSSIMULdata[,c("hhidpn","ragender", "weight", "brt", "ddt", "int_98", "st_98", "int_00", "st_00" )]
145: head(HRSSIMULdata,70)
146: #### export to txt file for IMaCh
147: write.table(HRSSIMULdata,file="HRSSIMUL.txt",col.names=F,row.names=F,quote=F)
148:
149:
150: #HRSSIMULdata<-HRSSIMULdata[,c("hhidpn","female","nhwhites","schlyrs","weight","brt","ddt","int_10","st_10","marpar_10","smoker_10","srh_10","int_12","st_12","marpar_12","smoker_12","srh_12","int_14","st_14","marpar_14","smoker_14","srh_14")]
151:
152: ## # VARIABLE SELECTIONS
153: ## dt1<-dat[,c( "hhidpn", # ID number of the respondent
154: ## "ragender", # respondent's gender 1M or 2F, mean 1.56
155: ## "rabdate", # Respondent's birth date (1890.0 to 1995.0)
156: ## "raddate", # Respondent's death date (1917.0 to 2019.0)
157: ## "rahispan", # Mexican-American and Other Hispanic are recoded to "1."
158: ## "raracem", # Race-masked: White/Caucasian 1, Black/African American 2, Other 3, Missing .
159: ## "raeduc", # Education: Years of
160: ## "r11mstat", # Marital status at wave 11: .J Webonterview missing, .M Other missing. Married 1
161: ## "r12mstat", # Married spouse absent 2
162: ## "r13mstat", # Partnered 3 Separated 4 Divorced 5
163: ## "r14mstat", # Widowed 7, Never married 8
164: ## "r11iwmid", # Date of interview at wave 11
165: ## "r12iwmid", #
166: ## "r13iwmid", #
167: ## "r14iwmid", #
168: ## "s11ddate", # Date of death (from wave 11) 1669
169: ## "s12ddate", # 967
170: ## "s13ddate", # 381
171: ## "s14ddate", # 8
172: ## "r11cesd", # CESD score at 11, 19400, mean 1.54
173: ## "r12cesd", #
174: ## "r13cesd", #
175: ## "r14cesd", #
176: ## "r11agey_m", # Age at mid wave 11 66.85
177: ## "r11adla", # Sum of ADLs at wave 11, 0.41
178: ## "r12adla", # 0.43
179: ## "r13adla", # 0.40
180: ## "r14adla", # 0.39
181: ## "r11wtresp" # Weight
182: ## )]
183:
184: # INDIVIDUAL SELECTIONS:
185: # Respondents in 2012, aged 50 and older, with no missing information on marital status in 2012
186: #dt2<-dt1 %>% filter(!is.na(r11mstat) & r11agey_m>=50);nrow(dm_bis)
187: #write.csv2(dt2,file="hrs12xSAS_noM.csv")
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>