Annotation of imach096d/doc/imach-htm.sav, revision 1.1

1.1     ! brouard     1: <!-- $Id$ --!>
        !             2: <html>
        !             3: 
        !             4: <head>
        !             5: <meta http-equiv="Content-Type"
        !             6: content="text/html; charset=iso-8859-1">
        !             7: <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
        !             8: <title>Computing Health Expectancies using IMaCh</title>
        !             9: <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
        !            10: </head>
        !            11: 
        !            12: <body bgcolor="#FFFFFF">
        !            13: 
        !            14: <hr size="3" color="#EC5E5E">
        !            15: 
        !            16: <h1 align="center"><font color="#00006A">Computing Health
        !            17: Expectancies using IMaCh</font></h1>
        !            18: 
        !            19: <h1 align="center"><font color="#00006A" size="5">(a Maximum
        !            20: Likelihood Computer Program using Interpolation of Markov Chains)</font></h1>
        !            21: 
        !            22: <p align="center">&nbsp;</p>
        !            23: 
        !            24: <p align="center"><a href="http://www.ined.fr/"><img
        !            25: src="logo-ined.gif" border="0" width="151" height="76"></a><img
        !            26: src="euroreves2.gif" width="151" height="75"></p>
        !            27: 
        !            28: <h3 align="center"><a href="http://www.ined.fr/"><font
        !            29: color="#00006A">INED</font></a><font color="#00006A"> and </font><a
        !            30: href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>
        !            31: 
        !            32: <p align="center"><font color="#00006A" size="4"><strong>Version
        !            33: 0.71a, March 2002</strong></font></p>
        !            34: 
        !            35: <hr size="3" color="#EC5E5E">
        !            36: 
        !            37: <p align="center"><font color="#00006A"><strong>Authors of the
        !            38: program: </strong></font><a href="http://sauvy.ined.fr/brouard"><font
        !            39: color="#00006A"><strong>Nicolas Brouard</strong></font></a><font
        !            40: color="#00006A"><strong>, senior researcher at the </strong></font><a
        !            41: href="http://www.ined.fr"><font color="#00006A"><strong>Institut
        !            42: National d'Etudes Démographiques</strong></font></a><font
        !            43: color="#00006A"><strong> (INED, Paris) in the &quot;Mortality,
        !            44: Health and Epidemiology&quot; Research Unit </strong></font></p>
        !            45: 
        !            46: <p align="center"><font color="#00006A"><strong>and Agnès
        !            47: Lièvre<br clear="left">
        !            48: </strong></font></p>
        !            49: 
        !            50: <h4><font color="#00006A">Contribution to the mathematics: C. R.
        !            51: Heathcote </font><font color="#00006A" size="2">(Australian
        !            52: National University, Canberra).</font></h4>
        !            53: 
        !            54: <h4><font color="#00006A">Contact: Agnès Lièvre (</font><a
        !            55: href="mailto:lievre@ined.fr"><font color="#00006A"><i>lievre@ined.fr</i></font></a><font
        !            56: color="#00006A">) </font></h4>
        !            57: 
        !            58: <hr>
        !            59: 
        !            60: <ul>
        !            61:     <li><a href="#intro">Introduction</a> </li>
        !            62:     <li><a href="#data">On what kind of data can it be used?</a></li>
        !            63:     <li><a href="#datafile">The data file</a> </li>
        !            64:     <li><a href="#biaspar">The parameter file</a> </li>
        !            65:     <li><a href="#running">Running Imach</a> </li>
        !            66:     <li><a href="#output">Output files and graphs</a> </li>
        !            67:     <li><a href="#example">Exemple</a> </li>
        !            68: </ul>
        !            69: 
        !            70: <hr>
        !            71: 
        !            72: <h2><a name="intro"><font color="#00006A">Introduction</font></a></h2>
        !            73: 
        !            74: <p>This program computes <b>Healthy Life Expectancies</b> from <b>cross-longitudinal
        !            75: data</b> using the methodology pioneered by Laditka and Wolf (1).
        !            76: Within the family of Health Expectancies (HE), Disability-free
        !            77: life expectancy (DFLE) is probably the most important index to
        !            78: monitor. In low mortality countries, there is a fear that when
        !            79: mortality declines, the increase in DFLE is not proportionate to
        !            80: the increase in total Life expectancy. This case is called the <em>Expansion
        !            81: of morbidity</em>. Most of the data collected today, in
        !            82: particular by the international <a href="http://www.reves.org">REVES</a>
        !            83: network on Health expectancy, and most HE indices based on these
        !            84: data, are <em>cross-sectional</em>. It means that the information
        !            85: collected comes from a single cross-sectional survey: people from
        !            86: various ages (but mostly old people) are surveyed on their health
        !            87: status at a single date. Proportion of people disabled at each
        !            88: age, can then be measured at that date. This age-specific
        !            89: prevalence curve is then used to distinguish, within the
        !            90: stationary population (which, by definition, is the life table
        !            91: estimated from the vital statistics on mortality at the same
        !            92: date), the disable population from the disability-free
        !            93: population. Life expectancy (LE) (or total population divided by
        !            94: the yearly number of births or deaths of this stationary
        !            95: population) is then decomposed into DFLE and DLE. This method of
        !            96: computing HE is usually called the Sullivan method (from the name
        !            97: of the author who first described it).</p>
        !            98: 
        !            99: <p>Age-specific proportions of people disable are very difficult
        !           100: to forecast because each proportion corresponds to historical
        !           101: conditions of the cohort and it is the result of the historical
        !           102: flows from entering disability and recovering in the past until
        !           103: today. The age-specific intensities (or incidence rates) of
        !           104: entering disability or recovering a good health, are reflecting
        !           105: actual conditions and therefore can be used at each age to
        !           106: forecast the future of this cohort. For example if a country is
        !           107: improving its technology of prosthesis, the incidence of
        !           108: recovering the ability to walk will be higher at each (old) age,
        !           109: but the prevalence of disability will only slightly reflect an
        !           110: improve because the prevalence is mostly affected by the history
        !           111: of the cohort and not by recent period effects. To measure the
        !           112: period improvement we have to simulate the future of a cohort of
        !           113: new-borns entering or leaving at each age the disability state or
        !           114: dying according to the incidence rates measured today on
        !           115: different cohorts. The proportion of people disabled at each age
        !           116: in this simulated cohort will be much lower (using the exemple of
        !           117: an improvement) that the proportions observed at each age in a
        !           118: cross-sectional survey. This new prevalence curve introduced in a
        !           119: life table will give a much more actual and realistic HE level
        !           120: than the Sullivan method which mostly measured the History of
        !           121: health conditions in this country.</p>
        !           122: 
        !           123: <p>Therefore, the main question is how to measure incidence rates
        !           124: from cross-longitudinal surveys? This is the goal of the IMaCH
        !           125: program. From your data and using IMaCH you can estimate period
        !           126: HE and not only Sullivan's HE. Also the standard errors of the HE
        !           127: are computed.</p>
        !           128: 
        !           129: <p>A cross-longitudinal survey consists in a first survey
        !           130: (&quot;cross&quot;) where individuals from different ages are
        !           131: interviewed on their health status or degree of disability. At
        !           132: least a second wave of interviews (&quot;longitudinal&quot;)
        !           133: should measure each new individual health status. Health
        !           134: expectancies are computed from the transitions observed between
        !           135: waves and are computed for each degree of severity of disability
        !           136: (number of life states). More degrees you consider, more time is
        !           137: necessary to reach the Maximum Likelihood of the parameters
        !           138: involved in the model. Considering only two states of disability
        !           139: (disable and healthy) is generally enough but the computer
        !           140: program works also with more health statuses.<br>
        !           141: <br>
        !           142: The simplest model is the multinomial logistic model where <i>pij</i>
        !           143: is the probability to be observed in state <i>j</i> at the second
        !           144: wave conditional to be observed in state <em>i</em> at the first
        !           145: wave. Therefore a simple model is: log<em>(pij/pii)= aij +
        !           146: bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
        !           147: is a covariate. The advantage that this computer program claims,
        !           148: comes from that if the delay between waves is not identical for
        !           149: each individual, or if some individual missed an interview, the
        !           150: information is not rounded or lost, but taken into account using
        !           151: an interpolation or extrapolation. <i>hPijx</i> is the
        !           152: probability to be observed in state <i>i</i> at age <i>x+h</i>
        !           153: conditional to the observed state <i>i</i> at age <i>x</i>. The
        !           154: delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
        !           155: of unobserved intermediate states. This elementary transition (by
        !           156: month or quarter trimester, semester or year) is modeled as a
        !           157: multinomial logistic. The <i>hPx</i> matrix is simply the matrix
        !           158: product of <i>nh*stepm</i> elementary matrices and the
        !           159: contribution of each individual to the likelihood is simply <i>hPijx</i>.
        !           160: <br>
        !           161: </p>
        !           162: 
        !           163: <p>The program presented in this manual is a quite general
        !           164: program named <strong>IMaCh</strong> (for <strong>I</strong>nterpolated
        !           165: <strong>MA</strong>rkov <strong>CH</strong>ain), designed to
        !           166: analyse transition data from longitudinal surveys. The first step
        !           167: is the parameters estimation of a transition probabilities model
        !           168: between an initial status and a final status. From there, the
        !           169: computer program produces some indicators such as observed and
        !           170: stationary prevalence, life expectancies and their variances and
        !           171: graphs. Our transition model consists in absorbing and
        !           172: non-absorbing states with the possibility of return across the
        !           173: non-absorbing states. The main advantage of this package,
        !           174: compared to other programs for the analysis of transition data
        !           175: (For example: Proc Catmod of SAS<sup>®</sup>) is that the whole
        !           176: individual information is used even if an interview is missing, a
        !           177: status or a date is unknown or when the delay between waves is
        !           178: not identical for each individual. The program can be executed
        !           179: according to parameters: selection of a sub-sample, number of
        !           180: absorbing and non-absorbing states, number of waves taken in
        !           181: account (the user inputs the first and the last interview), a
        !           182: tolerance level for the maximization function, the periodicity of
        !           183: the transitions (we can compute annual, quarterly or monthly
        !           184: transitions), covariates in the model. It works on Windows or on
        !           185: Unix.<br>
        !           186: </p>
        !           187: 
        !           188: <hr>
        !           189: 
        !           190: <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New
        !           191: Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of
        !           192: Aging and Health</i>. Vol 10, No. 2. </p>
        !           193: 
        !           194: <hr>
        !           195: 
        !           196: <h2><a name="data"><font color="#00006A">On what kind of data can
        !           197: it be used?</font></a></h2>
        !           198: 
        !           199: <p>The minimum data required for a transition model is the
        !           200: recording of a set of individuals interviewed at a first date and
        !           201: interviewed again at least one another time. From the
        !           202: observations of an individual, we obtain a follow-up over time of
        !           203: the occurrence of a specific event. In this documentation, the
        !           204: event is related to health status at older ages, but the program
        !           205: can be applied on a lot of longitudinal studies in different
        !           206: contexts. To build the data file explained into the next section,
        !           207: you must have the month and year of each interview and the
        !           208: corresponding health status. But in order to get age, date of
        !           209: birth (month and year) is required (missing values is allowed for
        !           210: month). Date of death (month and year) is an important
        !           211: information also required if the individual is dead. Shorter
        !           212: steps (i.e. a month) will more closely take into account the
        !           213: survival time after the last interview.</p>
        !           214: 
        !           215: <hr>
        !           216: 
        !           217: <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>
        !           218: 
        !           219: <p>In this example, 8,000 people have been interviewed in a
        !           220: cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).
        !           221: Some people missed 1, 2 or 3 interviews. Health statuses are
        !           222: healthy (1) and disable (2). The survey is not a real one. It is
        !           223: a simulation of the American Longitudinal Survey on Aging. The
        !           224: disability state is defined if the individual missed one of four
        !           225: ADL (Activity of daily living, like bathing, eating, walking).
        !           226: Therefore, even is the individuals interviewed in the sample are
        !           227: virtual, the information brought with this sample is close to the
        !           228: situation of the United States. Sex is not recorded is this
        !           229: sample.</p>
        !           230: 
        !           231: <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>
        !           232: in this first example) is an individual record which fields are: </p>
        !           233: 
        !           234: <ul>
        !           235:     <li><b>Index number</b>: positive number (field 1) </li>
        !           236:     <li><b>First covariate</b> positive number (field 2) </li>
        !           237:     <li><b>Second covariate</b> positive number (field 3) </li>
        !           238:     <li><a name="Weight"><b>Weight</b></a>: positive number
        !           239:         (field 4) . In most surveys individuals are weighted
        !           240:         according to the stratification of the sample.</li>
        !           241:     <li><b>Date of birth</b>: coded as mm/yyyy. Missing dates are
        !           242:         coded as 99/9999 (field 5) </li>
        !           243:     <li><b>Date of death</b>: coded as mm/yyyy. Missing dates are
        !           244:         coded as 99/9999 (field 6) </li>
        !           245:     <li><b>Date of first interview</b>: coded as mm/yyyy. Missing
        !           246:         dates are coded as 99/9999 (field 7) </li>
        !           247:     <li><b>Status at first interview</b>: positive number.
        !           248:         Missing values ar coded -1. (field 8) </li>
        !           249:     <li><b>Date of second interview</b>: coded as mm/yyyy.
        !           250:         Missing dates are coded as 99/9999 (field 9) </li>
        !           251:     <li><strong>Status at second interview</strong> positive
        !           252:         number. Missing values ar coded -1. (field 10) </li>
        !           253:     <li><b>Date of third interview</b>: coded as mm/yyyy. Missing
        !           254:         dates are coded as 99/9999 (field 11) </li>
        !           255:     <li><strong>Status at third interview</strong> positive
        !           256:         number. Missing values ar coded -1. (field 12) </li>
        !           257:     <li><b>Date of fourth interview</b>: coded as mm/yyyy.
        !           258:         Missing dates are coded as 99/9999 (field 13) </li>
        !           259:     <li><strong>Status at fourth interview</strong> positive
        !           260:         number. Missing values are coded -1. (field 14) </li>
        !           261:     <li>etc</li>
        !           262: </ul>
        !           263: 
        !           264: <p>&nbsp;</p>
        !           265: 
        !           266: <p>If your longitudinal survey do not include information about
        !           267: weights or covariates, you must fill the column with a number
        !           268: (e.g. 1) because a missing field is not allowed.</p>
        !           269: 
        !           270: <hr>
        !           271: 
        !           272: <h2><font color="#00006A">Your first example parameter file</font><a
        !           273: href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>
        !           274: 
        !           275: <h2><a name="biaspar"></a>#Imach version 0.71a, March 2002,
        !           276: INED-EUROREVES </h2>
        !           277: 
        !           278: <p>This is a comment. Comments start with a '#'.</p>
        !           279: 
        !           280: <h4><font color="#FF0000">First uncommented line</font></h4>
        !           281: 
        !           282: <pre>title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4</pre>
        !           283: 
        !           284: <ul>
        !           285:     <li><b>title=</b> 1st_example is title of the run. </li>
        !           286:     <li><b>datafile=</b>data1.txt is the name of the data set.
        !           287:         Our example is a six years follow-up survey. It consists
        !           288:         in a baseline followed by 3 reinterviews. </li>
        !           289:     <li><b>lastobs=</b> 8600 the program is able to run on a
        !           290:         subsample where the last observation number is lastobs.
        !           291:         It can be set a bigger number than the real number of
        !           292:         observations (e.g. 100000). In this example, maximisation
        !           293:         will be done on the 8600 first records. </li>
        !           294:     <li><b>firstpass=1</b> , <b>lastpass=4 </b>In case of more
        !           295:         than two interviews in the survey, the program can be run
        !           296:         on selected transitions periods. firstpass=1 means the
        !           297:         first interview included in the calculation is the
        !           298:         baseline survey. lastpass=4 means that the information
        !           299:         brought by the 4th interview is taken into account.</li>
        !           300: </ul>
        !           301: 
        !           302: <p>&nbsp;</p>
        !           303: 
        !           304: <h4><a name="biaspar-2"><font color="#FF0000">Second uncommented
        !           305: line</font></a></h4>
        !           306: 
        !           307: <pre>ftol=1.e-08 stepm=1 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
        !           308: 
        !           309: <ul>
        !           310:     <li><b>ftol=1e-8</b> Convergence tolerance on the function
        !           311:         value in the maximisation of the likelihood. Choosing a
        !           312:         correct value for ftol is difficult. 1e-8 is a correct
        !           313:         value for a 32 bits computer.</li>
        !           314:     <li><b>stepm=1</b> Time unit in months for interpolation.
        !           315:         Examples:<ul>
        !           316:             <li>If stepm=1, the unit is a month </li>
        !           317:             <li>If stepm=4, the unit is a trimester</li>
        !           318:             <li>If stepm=12, the unit is a year </li>
        !           319:             <li>If stepm=24, the unit is two years</li>
        !           320:             <li>... </li>
        !           321:         </ul>
        !           322:     </li>
        !           323:     <li><b>ncov=2</b> Number of covariates in the datafile. The
        !           324:         intercept and the age parameter are counting for 2
        !           325:         covariates.</li>
        !           326:     <li><b>nlstate=2</b> Number of non-absorbing (alive) states.
        !           327:         Here we have two alive states: disability-free is coded 1
        !           328:         and disability is coded 2. </li>
        !           329:     <li><b>ndeath=1</b> Number of absorbing states. The absorbing
        !           330:         state death is coded 3. </li>
        !           331:     <li><b>maxwav=4</b> Number of waves in the datafile.</li>
        !           332:     <li><a name="mle"><b>mle</b></a><b>=1</b> Option for the
        !           333:         Maximisation Likelihood Estimation. <ul>
        !           334:             <li>If mle=1 the program does the maximisation and
        !           335:                 the calculation of health expectancies </li>
        !           336:             <li>If mle=0 the program only does the calculation of
        !           337:                 the health expectancies. </li>
        !           338:         </ul>
        !           339:     </li>
        !           340:     <li><b>weight=0</b> Possibility to add weights. <ul>
        !           341:             <li>If weight=0 no weights are included </li>
        !           342:             <li>If weight=1 the maximisation integrates the
        !           343:                 weights which are in field <a href="#Weight">4</a></li>
        !           344:         </ul>
        !           345:     </li>
        !           346: </ul>
        !           347: 
        !           348: <h4><font color="#FF0000">Covariates</font></h4>
        !           349: 
        !           350: <p>Intercept and age are systematically included in the model.
        !           351: Additional covariates (actually two) can be included with the command: </p>
        !           352: 
        !           353: <pre>model=<em>list of covariates</em></pre>
        !           354: 
        !           355: <ul>
        !           356:     <li>if<strong> model=. </strong>then no covariates are
        !           357:         included</li>
        !           358:     <li>if <strong>model=V1</strong> the model includes the first
        !           359:         covariate (field 2)</li>
        !           360:     <li>if <strong>model=V2 </strong>the model includes the
        !           361:         second covariate (field 3)</li>
        !           362:     <li>if <strong>model=V1+V2 </strong>the model includes the
        !           363:         first and the second covariate (fields 2 and 3)</li>
        !           364:     <li>if <strong>model=V1*V2 </strong>the model includes the
        !           365:         product of the first and the second covariate (fields 2
        !           366:         and 3)</li>
        !           367:     <li>if <strong>model=V1+V1*age</strong> the model includes
        !           368:         the product covariate*age</li>
        !           369: </ul>
        !           370: 
        !           371: <h4><font color="#FF0000">Guess values for optimization</font><font
        !           372: color="#00006A"> </font></h4>
        !           373: 
        !           374: <p>You must write the initial guess values of the parameters for
        !           375: optimization. The number of parameters, <em>N</em> depends on the
        !           376: number of absorbing states and non-absorbing states and on the
        !           377: number of covariates. <br>
        !           378: <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
        !           379: <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncov</em>&nbsp;. <br>
        !           380: <br>
        !           381: Thus in the simple case with 2 covariates (the model is log
        !           382: (pij/pii) = aij + bij * age where intercept and age are the two
        !           383: covariates), and 2 health degrees (1 for disability-free and 2
        !           384: for disability) and 1 absorbing state (3), you must enter 8
        !           385: initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
        !           386: start with zeros as in this example, but if you have a more
        !           387: precise set (for example from an earlier run) you can enter it
        !           388: and it will speed up them<br>
        !           389: Each of the four lines starts with indices &quot;ij&quot;: <b>ij
        !           390: aij bij</b> </p>
        !           391: 
        !           392: <blockquote>
        !           393:     <pre># Guess values of aij and bij in log (pij/pii) = aij + bij * age
        !           394: 12 -14.155633  0.110794 
        !           395: 13  -7.925360  0.032091 
        !           396: 21  -1.890135 -0.029473 
        !           397: 23  -6.234642  0.022315 </pre>
        !           398: </blockquote>
        !           399: 
        !           400: <p>or, to simplify (in most of cases it converges but there is no warranty!): </p>
        !           401: 
        !           402: <blockquote>
        !           403:     <pre>12 0.0 0.0
        !           404: 13 0.0 0.0
        !           405: 21 0.0 0.0
        !           406: 23 0.0 0.0</pre>
        !           407: </blockquote>
        !           408: 
        !           409: <h4><font color="#FF0000">Guess values for computing variances</font></h4>
        !           410: 
        !           411: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
        !           412: used as an input to get the various output data files (Health
        !           413: expectancies, stationary prevalence etc.) and figures without
        !           414: rerunning the rather long maximisation phase (mle=0). </p>
        !           415: 
        !           416: <p>The scales are small values for the evaluation of numerical
        !           417: derivatives. These derivatives are used to compute the hessian
        !           418: matrix of the parameters, that is the inverse of the covariance
        !           419: matrix, and the variances of health expectancies. Each line
        !           420: consists in indices &quot;ij&quot; followed by the initial scales
        !           421: (zero to simplify) associated with aij and bij. </p>
        !           422: 
        !           423: <ul>
        !           424:     <li>If mle=1 you can enter zeros:</li>
        !           425: </ul>
        !           426: 
        !           427: <blockquote>
        !           428:     <pre># Scales (for hessian or gradient estimation)
        !           429: 12 0. 0. 
        !           430: 13 0. 0. 
        !           431: 21 0. 0. 
        !           432: 23 0. 0. </pre>
        !           433: </blockquote>
        !           434: 
        !           435: <ul>
        !           436:     <li>If mle=0 you must enter a covariance matrix (usually
        !           437:         obtained from an earlier run).</li>
        !           438: </ul>
        !           439: 
        !           440: <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>
        !           441: 
        !           442: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
        !           443: used as an input to get the various output data files (Health
        !           444: expectancies, stationary prevalence etc.) and figures without
        !           445: rerunning the rather long maximisation phase (mle=0). </p>
        !           446: 
        !           447: <p>Each line starts with indices &quot;ijk&quot; followed by the
        !           448: covariances between aij and bij: </p>
        !           449: 
        !           450: <pre>
        !           451:    121 Var(a12) 
        !           452:    122 Cov(b12,a12)  Var(b12) 
        !           453:           ...
        !           454:    232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23) </pre>
        !           455: 
        !           456: <ul>
        !           457:     <li>If mle=1 you can enter zeros. </li>
        !           458: </ul>
        !           459: 
        !           460: <blockquote>
        !           461:     <pre># Covariance matrix
        !           462: 121 0.
        !           463: 122 0. 0.
        !           464: 131 0. 0. 0. 
        !           465: 132 0. 0. 0. 0. 
        !           466: 211 0. 0. 0. 0. 0. 
        !           467: 212 0. 0. 0. 0. 0. 0. 
        !           468: 231 0. 0. 0. 0. 0. 0. 0. 
        !           469: 232 0. 0. 0. 0. 0. 0. 0. 0.</pre>
        !           470: </blockquote>
        !           471: 
        !           472: <ul>
        !           473:     <li>If mle=0 you must enter a covariance matrix (usually
        !           474:         obtained from an earlier run).<br>
        !           475:         </li>
        !           476: </ul>
        !           477: 
        !           478: <h4><font color="#FF0000">Age range for calculation of stationary
        !           479: prevalences and health expectancies</font></h4>
        !           480: 
        !           481: <pre>agemin=70 agemax=100 bage=50 fage=100</pre>
        !           482: 
        !           483: <p>Once we obtained the estimated parameters, the program is able
        !           484: to calculated stationary prevalence, transitions probabilities
        !           485: and life expectancies at any age. Choice of age range is useful
        !           486: for extrapolation. In our data file, ages varies from age 70 to
        !           487: 102. It is possible to get extrapolated stationary
        !           488: prevalence by age ranging from agemin to agemax. </p>
        !           489: 
        !           490: 
        !           491: <p>Setting bage=50 (begin age) and fage=100 (final age), makes the program computing
        !           492: life expectancy from age 'bage' to age 'fage'. As we use a model, we
        !           493: can interessingly compute life expectancy on a wider age range than the age
        !           494: range from the data. But the model can be rather wrong on much larger
        !           495: intervals. Program is limited to around 120 for upper age!</p>
        !           496: 
        !           497: <ul>
        !           498:     <li><b>agemin=</b> Minimum age for calculation of the
        !           499:         stationary prevalence </li>
        !           500:     <li><b>agemax=</b> Maximum age for calculation of the
        !           501:         stationary prevalence </li>
        !           502:     <li><b>bage=</b> Minimum age for calculation of the health
        !           503:         expectancies </li>
        !           504:     <li><b>fage=</b> Maximum age for calculation of the health
        !           505:         expectancies </li>
        !           506: </ul>
        !           507: 
        !           508: <h4><a name="Computing"><font color="#FF0000">Computing</font></a><font
        !           509: color="#FF0000"> the observed prevalence</font></h4>
        !           510: 
        !           511: <pre>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 </pre>
        !           512: 
        !           513: <p>Statements 'begin-prev-date' and 'end-prev-date' allow to
        !           514: select the period in which we calculate the observed prevalences
        !           515: in each state. In this example, the prevalences are calculated on
        !           516: data survey collected between 1 january 1984 and 1 june 1988. </p>
        !           517: 
        !           518: <ul>
        !           519:     <li><strong>begin-prev-date= </strong>Starting date
        !           520:         (day/month/year)</li>
        !           521:     <li><strong>end-prev-date= </strong>Final date
        !           522:         (day/month/year)</li>
        !           523: </ul>
        !           524: 
        !           525: <h4><font color="#FF0000">Population- or status-based health
        !           526: expectancies</font></h4>
        !           527: 
        !           528: <pre>pop_based=0</pre>
        !           529: 
        !           530: <p>The program computes status-based health expectancies, i.e health
        !           531: expectancies which depends on your initial health state.  If you are
        !           532: healthy your healthy life expectancy (e11) is higher than if you were
        !           533: disabled (e21, with e11 &gt; e21).<br>
        !           534: To compute a healthy life expectancy independant of the initial status
        !           535: we have to weight e11 and e21 according to the probability to be in
        !           536: each state at initial age or, with other word, according to the
        !           537: proportion of people in each state.<br>
        !           538: 
        !           539: We prefer computing a 'pure' period healthy life expectancy based only
        !           540: on the transtion forces. Then the weights are simply the stationnary
        !           541: prevalences or 'implied' prevalences at the initial age.<br>
        !           542: 
        !           543: Some other people would like to use the cross-sectional prevalences
        !           544: (the "Sullivan prevalences") observed at the initial age during a
        !           545: period of time <a href="#Computing">defined just above</a>.
        !           546: 
        !           547: <ul>
        !           548:     <li><strong>popbased= 0 </strong> Health expectancies are computed
        !           549:     at each age from stationary prevalences 'expected' at this initial age.</li>
        !           550:     <li><strong>popbased= 1 </strong> Health expectancies are computed
        !           551:     at each age from cross-sectional 'observed' prevalence at this
        !           552:     initial age. As all the population is not observed at the same exact date we
        !           553:     define a short period were the observed prevalence is computed.</li>
        !           554: </ul>
        !           555: 
        !           556: </p>
        !           557: 
        !           558: <h4><font color="#FF0000">Prevalence forecasting ( Experimental)</font></h4>
        !           559: 
        !           560: <pre>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </pre>
        !           561: 
        !           562: <p>Prevalence and population projections are only available if the
        !           563: interpolation unit is a month, i.e. stepm=1 and if there are no
        !           564: covariate. The programme estimates the prevalence in each state at a
        !           565: precise date expressed in day/month/year. The programme computes one
        !           566: forecasted prevalence a year from a starting date (1 january of 1989
        !           567: in this example) to a final date (1 january 1992). The statement
        !           568: mov_average allows to compute smoothed forecasted prevalences with a
        !           569: five-age moving average centered at the mid-age of the five-age
        !           570: period. </p>
        !           571: 
        !           572: <ul>
        !           573:     <li><strong>starting-proj-date</strong>= starting date
        !           574:         (day/month/year) of forecasting</li>
        !           575:     <li><strong>final-proj-date= </strong>final date
        !           576:         (day/month/year) of forecasting</li>
        !           577:     <li><strong>mov_average</strong>= smoothing with a five-age
        !           578:         moving average centered at the mid-age of the five-age
        !           579:         period. The command<strong> mov_average</strong> takes
        !           580:         value 1 if the prevalences are smoothed and 0 otherwise.</li>
        !           581: </ul>
        !           582: 
        !           583: <h4><font color="#FF0000">Last uncommented line : Population
        !           584: forecasting </font></h4>
        !           585: 
        !           586: <pre>popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992</pre>
        !           587: 
        !           588: <p>This command is available if the interpolation unit is a
        !           589: month, i.e. stepm=1 and if popforecast=1. From a data file
        !           590: including age and number of persons alive at the precise date
        !           591: &#145;popfiledate&#146;, you can forecast the number of persons
        !           592: in each state until date &#145;last-popfiledate&#146;. In this
        !           593: example, the popfile <a href="pyram.txt"><b>pyram.txt</b></a>
        !           594: includes real data which are the Japanese population in 1989.</p>
        !           595: 
        !           596: <ul type="disc">
        !           597:     <li class="MsoNormal"
        !           598:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popforecast=
        !           599:         0 </b>Option for population forecasting. If
        !           600:         popforecast=1, the programme does the forecasting<b>.</b></li>
        !           601:     <li class="MsoNormal"
        !           602:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfile=
        !           603:         </b>name of the population file</li>
        !           604:     <li class="MsoNormal"
        !           605:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfiledate=</b>
        !           606:         date of the population population</li>
        !           607:     <li class="MsoNormal"
        !           608:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>last-popfiledate</b>=
        !           609:         date of the last population projection&nbsp;</li>
        !           610: </ul>
        !           611: 
        !           612: <hr>
        !           613: 
        !           614: <h2><a name="running"></a><font color="#00006A">Running Imach
        !           615: with this example</font></h2>
        !           616: 
        !           617: <p>We assume that you entered your <a href="biaspar.imach">1st_example
        !           618: parameter file</a> as explained <a href="#biaspar">above</a>. To
        !           619: run the program you should click on the imach.exe icon and enter
        !           620: the name of the parameter file which is for example <a
        !           621: href="C:\usr\imach\mle\biaspar.txt">C:\usr\imach\mle\biaspar.txt</a>
        !           622: (you also can click on the biaspar.txt icon located in <br>
        !           623: <a href="C:\usr\imach\mle">C:\usr\imach\mle</a> and put it with
        !           624: the mouse on the imach window).<br>
        !           625: </p>
        !           626: 
        !           627: <p>The time to converge depends on the step unit that you used (1
        !           628: month is cpu consuming), on the number of cases, and on the
        !           629: number of variables.</p>
        !           630: 
        !           631: <p>The program outputs many files. Most of them are files which
        !           632: will be plotted for better understanding.</p>
        !           633: 
        !           634: <hr>
        !           635: 
        !           636: <h2><a name="output"><font color="#00006A">Output of the program
        !           637: and graphs</font> </a></h2>
        !           638: 
        !           639: <p>Once the optimization is finished, some graphics can be made
        !           640: with a grapher. We use Gnuplot which is an interactive plotting
        !           641: program copyrighted but freely distributed. A gnuplot reference
        !           642: manual is available <a href="http://www.gnuplot.info/">here</a>. <br>
        !           643: When the running is finished, the user should enter a caracter
        !           644: for plotting and output editing. </p>
        !           645: 
        !           646: <p>These caracters are:</p>
        !           647: 
        !           648: <ul>
        !           649:     <li>'c' to start again the program from the beginning.</li>
        !           650:     <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>
        !           651:         file to edit the output files and graphs. </li>
        !           652:     <li>'q' for exiting.</li>
        !           653: </ul>
        !           654: 
        !           655: <h5><font size="4"><strong>Results files </strong></font><br>
        !           656: <br>
        !           657: <font color="#EC5E5E" size="3"><strong>- </strong></font><a
        !           658: name="Observed prevalence in each state"><font color="#EC5E5E"
        !           659: size="3"><strong>Observed prevalence in each state</strong></font></a><font
        !           660: color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:
        !           661: </b><a href="prbiaspar.txt"><b>prbiaspar.txt</b></a><br>
        !           662: </h5>
        !           663: 
        !           664: <p>The first line is the title and displays each field of the
        !           665: file. The first column is age. The fields 2 and 6 are the
        !           666: proportion of individuals in states 1 and 2 respectively as
        !           667: observed during the first exam. Others fields are the numbers of
        !           668: people in states 1, 2 or more. The number of columns increases if
        !           669: the number of states is higher than 2.<br>
        !           670: The header of the file is </p>
        !           671: 
        !           672: <pre># Age Prev(1) N(1) N Age Prev(2) N(2) N
        !           673: 70 1.00000 631 631 70 0.00000 0 631
        !           674: 71 0.99681 625 627 71 0.00319 2 627 
        !           675: 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>
        !           676: 
        !           677: <p>It means that at age 70, the prevalence in state 1 is 1.000
        !           678: and in state 2 is 0.00 . At age 71 the number of individuals in
        !           679: state 1 is 625 and in state 2 is 2, hence the total number of
        !           680: people aged 71 is 625+2=627. <br>
        !           681: </p>
        !           682: 
        !           683: <h5><font color="#EC5E5E" size="3"><b>- Estimated parameters and
        !           684: covariance matrix</b></font><b>: </b><a href="rbiaspar.txt"><b>rbiaspar.txt</b></a></h5>
        !           685: 
        !           686: <p>This file contains all the maximisation results: </p>
        !           687: 
        !           688: <pre> -2 log likelihood= 21660.918613445392
        !           689:  Estimated parameters: a12 = -12.290174 b12 = 0.092161 
        !           690:                        a13 = -9.155590  b13 = 0.046627 
        !           691:                        a21 = -2.629849  b21 = -0.022030 
        !           692:                        a23 = -7.958519  b23 = 0.042614  
        !           693:  Covariance matrix: Var(a12) = 1.47453e-001
        !           694:                     Var(b12) = 2.18676e-005
        !           695:                     Var(a13) = 2.09715e-001
        !           696:                     Var(b13) = 3.28937e-005  
        !           697:                     Var(a21) = 9.19832e-001
        !           698:                     Var(b21) = 1.29229e-004
        !           699:                     Var(a23) = 4.48405e-001
        !           700:                     Var(b23) = 5.85631e-005 
        !           701:  </pre>
        !           702: 
        !           703: <p>By substitution of these parameters in the regression model,
        !           704: we obtain the elementary transition probabilities:</p>
        !           705: 
        !           706: <p><img src="pebiaspar1.gif" width="400" height="300"></p>
        !           707: 
        !           708: <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:
        !           709: </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>
        !           710: 
        !           711: <p>Here are the transitions probabilities Pij(x, x+nh) where nh
        !           712: is a multiple of 2 years. The first column is the starting age x
        !           713: (from age 50 to 100), the second is age (x+nh) and the others are
        !           714: the transition probabilities p11, p12, p13, p21, p22, p23. For
        !           715: example, line 5 of the file is: </p>
        !           716: 
        !           717: <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>
        !           718: 
        !           719: <p>and this means: </p>
        !           720: 
        !           721: <pre>p11(100,106)=0.02655
        !           722: p12(100,106)=0.17622
        !           723: p13(100,106)=0.79722
        !           724: p21(100,106)=0.01809
        !           725: p22(100,106)=0.13678
        !           726: p22(100,106)=0.84513 </pre>
        !           727: 
        !           728: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
        !           729: name="Stationary prevalence in each state"><font color="#EC5E5E"
        !           730: size="3"><b>Stationary prevalence in each state</b></font></a><b>:
        !           731: </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>
        !           732: 
        !           733: <pre>#Prevalence
        !           734: #Age 1-1 2-2
        !           735: 
        !           736: #************ 
        !           737: 70 0.90134 0.09866
        !           738: 71 0.89177 0.10823 
        !           739: 72 0.88139 0.11861 
        !           740: 73 0.87015 0.12985 </pre>
        !           741: 
        !           742: <p>At age 70 the stationary prevalence is 0.90134 in state 1 and
        !           743: 0.09866 in state 2. This stationary prevalence differs from
        !           744: observed prevalence. Here is the point. The observed prevalence
        !           745: at age 70 results from the incidence of disability, incidence of
        !           746: recovery and mortality which occurred in the past of the cohort.
        !           747: Stationary prevalence results from a simulation with actual
        !           748: incidences and mortality (estimated from this cross-longitudinal
        !           749: survey). It is the best predictive value of the prevalence in the
        !           750: future if &quot;nothing changes in the future&quot;. This is
        !           751: exactly what demographers do with a Life table. Life expectancy
        !           752: is the expected mean time to survive if observed mortality rates
        !           753: (incidence of mortality) &quot;remains constant&quot; in the
        !           754: future. </p>
        !           755: 
        !           756: <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of
        !           757: stationary prevalence</b></font><b>: </b><a
        !           758: href="vplrbiaspar.txt"><b>vplrbiaspar.txt</b></a></h5>
        !           759: 
        !           760: <p>The stationary prevalence has to be compared with the observed
        !           761: prevalence by age. But both are statistical estimates and
        !           762: subjected to stochastic errors due to the size of the sample, the
        !           763: design of the survey, and, for the stationary prevalence to the
        !           764: model used and fitted. It is possible to compute the standard
        !           765: deviation of the stationary prevalence at each age.</p>
        !           766: 
        !           767: <h5><font color="#EC5E5E" size="3">-Observed and stationary
        !           768: prevalence in state (2=disable) with the confident interval</font>:<b>
        !           769: </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>
        !           770: 
        !           771: <p>This graph exhibits the stationary prevalence in state (2)
        !           772: with the confidence interval in red. The green curve is the
        !           773: observed prevalence (or proportion of individuals in state (2)).
        !           774: Without discussing the results (it is not the purpose here), we
        !           775: observe that the green curve is rather below the stationary
        !           776: prevalence. It suggests an increase of the disability prevalence
        !           777: in the future.</p>
        !           778: 
        !           779: <p><img src="vbiaspar21.gif" width="400" height="300"></p>
        !           780: 
        !           781: <h5><font color="#EC5E5E" size="3"><b>-Convergence to the
        !           782: stationary prevalence of disability</b></font><b>: </b><a
        !           783: href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>
        !           784: <img src="pbiaspar11.gif" width="400" height="300"> </h5>
        !           785: 
        !           786: <p>This graph plots the conditional transition probabilities from
        !           787: an initial state (1=healthy in red at the bottom, or 2=disable in
        !           788: green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
        !           789: age <em>x+h. </em>Conditional means at the condition to be alive
        !           790: at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
        !           791: curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
        !           792: + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
        !           793: prevalence of disability</em>. In order to get the stationary
        !           794: prevalence at age 70 we should start the process at an earlier
        !           795: age, i.e.50. If the disability state is defined by severe
        !           796: disability criteria with only a few chance to recover, then the
        !           797: incidence of recovery is low and the time to convergence is
        !           798: probably longer. But we don't have experience yet.</p>
        !           799: 
        !           800: <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age
        !           801: and initial health status</b></font><b>: </b><a
        !           802: href="erbiaspar.txt"><b>erbiaspar.txt</b></a></h5>
        !           803: 
        !           804: <pre># Health expectancies 
        !           805: # Age 1-1 1-2 2-1 2-2 
        !           806: 70 10.9226 3.0401 5.6488 6.2122 
        !           807: 71 10.4384 3.0461 5.2477 6.1599 
        !           808: 72 9.9667 3.0502 4.8663 6.1025 
        !           809: 73 9.5077 3.0524 4.5044 6.0401 </pre>
        !           810: 
        !           811: <pre>For example 70 10.4227 3.0402 5.6488 5.7123 means:
        !           812: e11=10.4227 e12=3.0402 e21=5.6488 e22=5.7123</pre>
        !           813: 
        !           814: <pre><img src="expbiaspar21.gif" width="400" height="300"><img
        !           815: src="expbiaspar11.gif" width="400" height="300"></pre>
        !           816: 
        !           817: <p>For example, life expectancy of a healthy individual at age 70
        !           818: is 10.42 in the healthy state and 3.04 in the disability state
        !           819: (=13.46 years). If he was disable at age 70, his life expectancy
        !           820: will be shorter, 5.64 in the healthy state and 5.71 in the
        !           821: disability state (=11.35 years). The total life expectancy is a
        !           822: weighted mean of both, 13.46 and 11.35; weight is the proportion
        !           823: of people disabled at age 70. In order to get a pure period index
        !           824: (i.e. based only on incidences) we use the <a
        !           825: href="#Stationary prevalence in each state">computed or
        !           826: stationary prevalence</a> at age 70 (i.e. computed from
        !           827: incidences at earlier ages) instead of the <a
        !           828: href="#Observed prevalence in each state">observed prevalence</a>
        !           829: (for example at first exam) (<a href="#Health expectancies">see
        !           830: below</a>).</p>
        !           831: 
        !           832: <h5><font color="#EC5E5E" size="3"><b>- Variances of life
        !           833: expectancies by age and initial health status</b></font><b>: </b><a
        !           834: href="vrbiaspar.txt"><b>vrbiaspar.txt</b></a></h5>
        !           835: 
        !           836: <p>For example, the covariances of life expectancies Cov(ei,ej)
        !           837: at age 50 are (line 3) </p>
        !           838: 
        !           839: <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>
        !           840: 
        !           841: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
        !           842: name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health
        !           843: expectancies</b></font></a><font color="#EC5E5E" size="3"><b>
        !           844: with standard errors in parentheses</b></font><b>: </b><a
        !           845: href="trbiaspar.txt"><font face="Courier New"><b>trbiaspar.txt</b></font></a></h5>
        !           846: 
        !           847: <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>
        !           848: 
        !           849: <pre>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </pre>
        !           850: 
        !           851: <p>Thus, at age 70 the total life expectancy, e..=13.26 years is
        !           852: the weighted mean of e1.=13.46 and e2.=11.35 by the stationary
        !           853: prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
        !           854: state 2, respectively (the sum is equal to one). e.1=9.95 is the
        !           855: Disability-free life expectancy at age 70 (it is again a weighted
        !           856: mean of e11 and e21). e.2=3.30 is also the life expectancy at age
        !           857: 70 to be spent in the disability state.</p>
        !           858: 
        !           859: <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by
        !           860: age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:
        !           861: </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>
        !           862: 
        !           863: <p>This figure represents the health expectancies and the total
        !           864: life expectancy with the confident interval in dashed curve. </p>
        !           865: 
        !           866: <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>
        !           867: 
        !           868: <p>Standard deviations (obtained from the information matrix of
        !           869: the model) of these quantities are very useful.
        !           870: Cross-longitudinal surveys are costly and do not involve huge
        !           871: samples, generally a few thousands; therefore it is very
        !           872: important to have an idea of the standard deviation of our
        !           873: estimates. It has been a big challenge to compute the Health
        !           874: Expectancy standard deviations. Don't be confuse: life expectancy
        !           875: is, as any expected value, the mean of a distribution; but here
        !           876: we are not computing the standard deviation of the distribution,
        !           877: but the standard deviation of the estimate of the mean.</p>
        !           878: 
        !           879: <p>Our health expectancies estimates vary according to the sample
        !           880: size (and the standard deviations give confidence intervals of
        !           881: the estimate) but also according to the model fitted. Let us
        !           882: explain it in more details.</p>
        !           883: 
        !           884: <p>Choosing a model means ar least two kind of choices. First we
        !           885: have to decide the number of disability states. Second we have to
        !           886: design, within the logit model family, the model: variables,
        !           887: covariables, confonding factors etc. to be included.</p>
        !           888: 
        !           889: <p>More disability states we have, better is our demographical
        !           890: approach of the disability process, but smaller are the number of
        !           891: transitions between each state and higher is the noise in the
        !           892: measurement. We do not have enough experiments of the various
        !           893: models to summarize the advantages and disadvantages, but it is
        !           894: important to say that even if we had huge and unbiased samples,
        !           895: the total life expectancy computed from a cross-longitudinal
        !           896: survey, varies with the number of states. If we define only two
        !           897: states, alive or dead, we find the usual life expectancy where it
        !           898: is assumed that at each age, people are at the same risk to die.
        !           899: If we are differentiating the alive state into healthy and
        !           900: disable, and as the mortality from the disability state is higher
        !           901: than the mortality from the healthy state, we are introducing
        !           902: heterogeneity in the risk of dying. The total mortality at each
        !           903: age is the weighted mean of the mortality in each state by the
        !           904: prevalence in each state. Therefore if the proportion of people
        !           905: at each age and in each state is different from the stationary
        !           906: equilibrium, there is no reason to find the same total mortality
        !           907: at a particular age. Life expectancy, even if it is a very useful
        !           908: tool, has a very strong hypothesis of homogeneity of the
        !           909: population. Our main purpose is not to measure differential
        !           910: mortality but to measure the expected time in a healthy or
        !           911: disability state in order to maximise the former and minimize the
        !           912: latter. But the differential in mortality complexifies the
        !           913: measurement.</p>
        !           914: 
        !           915: <p>Incidences of disability or recovery are not affected by the
        !           916: number of states if these states are independant. But incidences
        !           917: estimates are dependant on the specification of the model. More
        !           918: covariates we added in the logit model better is the model, but
        !           919: some covariates are not well measured, some are confounding
        !           920: factors like in any statistical model. The procedure to &quot;fit
        !           921: the best model' is similar to logistic regression which itself is
        !           922: similar to regression analysis. We haven't yet been sofar because
        !           923: we also have a severe limitation which is the speed of the
        !           924: convergence. On a Pentium III, 500 MHz, even the simplest model,
        !           925: estimated by month on 8,000 people may take 4 hours to converge.
        !           926: Also, the program is not yet a statistical package, which permits
        !           927: a simple writing of the variables and the model to take into
        !           928: account in the maximisation. The actual program allows only to
        !           929: add simple variables like age+sex or age+sex+ age*sex but will
        !           930: never be general enough. But what is to remember, is that
        !           931: incidences or probability of change from one state to another is
        !           932: affected by the variables specified into the model.</p>
        !           933: 
        !           934: <p>Also, the age range of the people interviewed has a link with
        !           935: the age range of the life expectancy which can be estimated by
        !           936: extrapolation. If your sample ranges from age 70 to 95, you can
        !           937: clearly estimate a life expectancy at age 70 and trust your
        !           938: confidence interval which is mostly based on your sample size,
        !           939: but if you want to estimate the life expectancy at age 50, you
        !           940: should rely in your model, but fitting a logistic model on a age
        !           941: range of 70-95 and estimating probabilties of transition out of
        !           942: this age range, say at age 50 is very dangerous. At least you
        !           943: should remember that the confidence interval given by the
        !           944: standard deviation of the health expectancies, are under the
        !           945: strong assumption that your model is the 'true model', which is
        !           946: probably not the case.</p>
        !           947: 
        !           948: <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter
        !           949: file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>
        !           950: 
        !           951: <p>This copy of the parameter file can be useful to re-run the
        !           952: program while saving the old output files. </p>
        !           953: 
        !           954: <h5><font color="#EC5E5E" size="3"><b>- Prevalence forecasting</b></font><b>:
        !           955: </b><a href="frbiaspar.txt"><b>frbiaspar.txt</b></a></h5>
        !           956: 
        !           957: <p
        !           958: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">First,
        !           959: we have estimated the observed prevalence between 1/1/1984 and
        !           960: 1/6/1988. The mean date of interview (weighed average of the
        !           961: interviews performed between1/1/1984 and 1/6/1988) is estimated
        !           962: to be 13/9/1985, as written on the top on the file. Then we
        !           963: forecast the probability to be in each state. </p>
        !           964: 
        !           965: <p
        !           966: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Example,
        !           967: at date 1/1/1989 : </p>
        !           968: 
        !           969: <pre class="MsoNormal"># StartingAge FinalAge P.1 P.2 P.3
        !           970: # Forecasting at date 1/1/1989
        !           971:   73 0.807 0.078 0.115</pre>
        !           972: 
        !           973: <p
        !           974: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Since
        !           975: the minimum age is 70 on the 13/9/1985, the youngest forecasted
        !           976: age is 73. This means that at age a person aged 70 at 13/9/1989
        !           977: has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.
        !           978: Similarly, the probability to be in state 2 is 0.078 and the
        !           979: probability to die is 0.115. Then, on the 1/1/1989, the
        !           980: prevalence of disability at age 73 is estimated to be 0.088.</p>
        !           981: 
        !           982: <h5><font color="#EC5E5E" size="3"><b>- Population forecasting</b></font><b>:
        !           983: </b><a href="poprbiaspar.txt"><b>poprbiaspar.txt</b></a></h5>
        !           984: 
        !           985: <pre># Age P.1 P.2 P.3 [Population]
        !           986: # Forecasting at date 1/1/1989 
        !           987: 75 572685.22 83798.08 
        !           988: 74 621296.51 79767.99 
        !           989: 73 645857.70 69320.60 </pre>
        !           990: 
        !           991: <pre># Forecasting at date 1/1/19909 
        !           992: 76 442986.68 92721.14 120775.48
        !           993: 75 487781.02 91367.97 121915.51
        !           994: 74 512892.07 85003.47 117282.76 </pre>
        !           995: 
        !           996: <p>From the population file, we estimate the number of people in
        !           997: each state. At age 73, 645857 persons are in state 1 and 69320
        !           998: are in state 2. One year latter, 512892 are still in state 1,
        !           999: 85003 are in state 2 and 117282 died before 1/1/1990.</p>
        !          1000: 
        !          1001: <hr>
        !          1002: 
        !          1003: <h2><a name="example"> </a><font color="#00006A">Trying an example</font></a></h2>
        !          1004: 
        !          1005: <p>Since you know how to run the program, it is time to test it
        !          1006: on your own computer. Try for example on a parameter file named <a
        !          1007: href="..\mytry\imachpar.txt">imachpar.txt</a> which is a copy of <font
        !          1008: size="2" face="Courier New">mypar.txt</font> included in the
        !          1009: subdirectory of imach, <font size="2" face="Courier New">mytry</font>.
        !          1010: Edit it to change the name of the data file to <font size="2"
        !          1011: face="Courier New">..\data\mydata.txt</font> if you don't want to
        !          1012: copy it on the same directory. The file <font face="Courier New">mydata.txt</font>
        !          1013: is a smaller file of 3,000 people but still with 4 waves. </p>
        !          1014: 
        !          1015: <p>Click on the imach.exe icon to open a window. Answer to the
        !          1016: question:'<strong>Enter the parameter file name:'</strong></p>
        !          1017: 
        !          1018: <table border="1">
        !          1019:     <tr>
        !          1020:         <td width="100%"><strong>IMACH, Version 0.71</strong><p><strong>Enter
        !          1021:         the parameter file name: ..\mytry\imachpar.txt</strong></p>
        !          1022:         </td>
        !          1023:     </tr>
        !          1024: </table>
        !          1025: 
        !          1026: <p>Most of the data files or image files generated, will use the
        !          1027: 'imachpar' string into their name. The running time is about 2-3
        !          1028: minutes on a Pentium III. If the execution worked correctly, the
        !          1029: outputs files are created in the current directory, and should be
        !          1030: the same as the mypar files initially included in the directory <font
        !          1031: size="2" face="Courier New">mytry</font>.</p>
        !          1032: 
        !          1033: <ul>
        !          1034:     <li><pre><u>Output on the screen</u> The output screen looks like <a
        !          1035: href="imachrun.LOG">this Log file</a>
        !          1036: #
        !          1037: 
        !          1038: title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3
        !          1039: ftol=1.000000e-008 stepm=24 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
        !          1040:     </li>
        !          1041:     <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92
        !          1042: 
        !          1043: Warning, no any valid information for:126 line=126
        !          1044: Warning, no any valid information for:2307 line=2307
        !          1045: Delay (in months) between two waves Min=21 Max=51 Mean=24.495826
        !          1046: <font face="Times New Roman">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</font>
        !          1047: Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14
        !          1048:  prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1
        !          1049: Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>
        !          1050:     </li>
        !          1051: </ul>
        !          1052: 
        !          1053: <p>&nbsp;</p>
        !          1054: 
        !          1055: <ul>
        !          1056:     <li>Maximisation with the Powell algorithm. 8 directions are
        !          1057:         given corresponding to the 8 parameters. this can be
        !          1058:         rather long to get convergence.<br>
        !          1059:         <font size="1" face="Courier New"><br>
        !          1060:         Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
        !          1061:         0.000000000000 3<br>
        !          1062:         0.000000000000 4 0.000000000000 5 0.000000000000 6
        !          1063:         0.000000000000 7 <br>
        !          1064:         0.000000000000 8 0.000000000000<br>
        !          1065:         1..........2.................3..........4.................5.........<br>
        !          1066:         6................7........8...............<br>
        !          1067:         Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
        !          1068:         <br>
        !          1069:         2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
        !          1070:         5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
        !          1071:         8 0.051272038506<br>
        !          1072:         1..............2...........3..............4...........<br>
        !          1073:         5..........6................7...........8.........<br>
        !          1074:         #Number of iterations = 23, -2 Log likelihood =
        !          1075:         6744.954042573691<br>
        !          1076:         # Parameters<br>
        !          1077:         12 -12.966061 0.135117 <br>
        !          1078:         13 -7.401109 0.067831 <br>
        !          1079:         21 -0.672648 -0.006627 <br>
        !          1080:         23 -5.051297 0.051271 </font><br>
        !          1081:         </li>
        !          1082:     <li><pre><font size="2">Calculation of the hessian matrix. Wait...
        !          1083: 12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78
        !          1084: 
        !          1085: Inverting the hessian to get the covariance matrix. Wait...
        !          1086: 
        !          1087: #Hessian matrix#
        !          1088: 3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 
        !          1089: 2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 
        !          1090: -4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 
        !          1091: -3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 
        !          1092: -1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 
        !          1093: -1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 
        !          1094: 3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 
        !          1095: 3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 
        !          1096: # Scales
        !          1097: 12 1.00000e-004 1.00000e-006
        !          1098: 13 1.00000e-004 1.00000e-006
        !          1099: 21 1.00000e-003 1.00000e-005
        !          1100: 23 1.00000e-004 1.00000e-005
        !          1101: # Covariance
        !          1102:   1 5.90661e-001
        !          1103:   2 -7.26732e-003 8.98810e-005
        !          1104:   3 8.80177e-002 -1.12706e-003 5.15824e-001
        !          1105:   4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005
        !          1106:   5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000
        !          1107:   6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004
        !          1108:   7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000
        !          1109:   8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004
        !          1110: # agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).
        !          1111: 
        !          1112: 
        !          1113: agemin=70 agemax=100 bage=50 fage=100
        !          1114: Computing prevalence limit: result on file 'plrmypar.txt' 
        !          1115: Computing pij: result on file 'pijrmypar.txt' 
        !          1116: Computing Health Expectancies: result on file 'ermypar.txt' 
        !          1117: Computing Variance-covariance of DFLEs: file 'vrmypar.txt' 
        !          1118: Computing Total LEs with variances: file 'trmypar.txt' 
        !          1119: Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' 
        !          1120: End of Imach
        !          1121: </font></pre>
        !          1122:     </li>
        !          1123: </ul>
        !          1124: 
        !          1125: <p><font size="3">Once the running is finished, the program
        !          1126: requires a caracter:</font></p>
        !          1127: 
        !          1128: <table border="1">
        !          1129:     <tr>
        !          1130:         <td width="100%"><strong>Type e to edit output files, c
        !          1131:         to start again, and q for exiting:</strong></td>
        !          1132:     </tr>
        !          1133: </table>
        !          1134: 
        !          1135: <p><font size="3">First you should enter <strong>e </strong>to
        !          1136: edit the master file mypar.htm. </font></p>
        !          1137: 
        !          1138: <ul>
        !          1139:     <li><u>Outputs files</u> <br>
        !          1140:         <br>
        !          1141:         - Observed prevalence in each state: <a
        !          1142:         href="..\mytry\prmypar.txt">pmypar.txt</a> <br>
        !          1143:         - Estimated parameters and the covariance matrix: <a
        !          1144:         href="..\mytry\rmypar.txt">rmypar.txt</a> <br>
        !          1145:         - Stationary prevalence in each state: <a
        !          1146:         href="..\mytry\plrmypar.txt">plrmypar.txt</a> <br>
        !          1147:         - Transition probabilities: <a
        !          1148:         href="..\mytry\pijrmypar.txt">pijrmypar.txt</a> <br>
        !          1149:         - Copy of the parameter file: <a
        !          1150:         href="..\mytry\ormypar.txt">ormypar.txt</a> <br>
        !          1151:         - Life expectancies by age and initial health status: <a
        !          1152:         href="..\mytry\ermypar.txt">ermypar.txt</a> <br>
        !          1153:         - Variances of life expectancies by age and initial
        !          1154:         health status: <a href="..\mytry\vrmypar.txt">vrmypar.txt</a>
        !          1155:         <br>
        !          1156:         - Health expectancies with their variances: <a
        !          1157:         href="..\mytry\trmypar.txt">trmypar.txt</a> <br>
        !          1158:         - Standard deviation of stationary prevalence: <a
        !          1159:         href="..\mytry\vplrmypar.txt">vplrmypar.txt</a><br>
        !          1160:         - Prevalences forecasting: <a href="frmypar.txt">frmypar.txt</a>
        !          1161:         <br>
        !          1162:         - Population forecasting (if popforecast=1): <a
        !          1163:         href="poprmypar.txt">poprmypar.txt</a> <br>
        !          1164:         </li>
        !          1165:     <li><u>Graphs</u> <br>
        !          1166:         <br>
        !          1167:         -<a href="../mytry/pemypar1.gif">One-step transition
        !          1168:         probabilities</a><br>
        !          1169:         -<a href="../mytry/pmypar11.gif">Convergence to the
        !          1170:         stationary prevalence</a><br>
        !          1171:         -<a href="..\mytry\vmypar11.gif">Observed and stationary
        !          1172:         prevalence in state (1) with the confident interval</a> <br>
        !          1173:         -<a href="..\mytry\vmypar21.gif">Observed and stationary
        !          1174:         prevalence in state (2) with the confident interval</a> <br>
        !          1175:         -<a href="..\mytry\expmypar11.gif">Health life
        !          1176:         expectancies by age and initial health state (1)</a> <br>
        !          1177:         -<a href="..\mytry\expmypar21.gif">Health life
        !          1178:         expectancies by age and initial health state (2)</a> <br>
        !          1179:         -<a href="..\mytry\emypar1.gif">Total life expectancy by
        !          1180:         age and health expectancies in states (1) and (2).</a> </li>
        !          1181: </ul>
        !          1182: 
        !          1183: <p>This software have been partly granted by <a
        !          1184: href="http://euroreves.ined.fr">Euro-REVES</a>, a concerted
        !          1185: action from the European Union. It will be copyrighted
        !          1186: identically to a GNU software product, i.e. program and software
        !          1187: can be distributed freely for non commercial use. Sources are not
        !          1188: widely distributed today. You can get them by asking us with a
        !          1189: simple justification (name, email, institute) <a
        !          1190: href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a
        !          1191: href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>
        !          1192: 
        !          1193: <p>Latest version (0.71 of February 2002) can be accessed at <a
        !          1194: href="http://euroeves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>
        !          1195: </p>
        !          1196: </body>
        !          1197: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>