Diff for /imach096d/doc/imach.htm between versions 1.2 and 1.3

version 1.2, 2001/03/14 08:24:41 version 1.3, 2001/05/09 14:09:37
Line 28  src="euroreves2.gif" width="151" height= Line 28  src="euroreves2.gif" width="151" height=
 color="#00006A">INED</font></a><font color="#00006A"> and </font><a  color="#00006A">INED</font></a><font color="#00006A"> and </font><a
 href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>  href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>
   
 <p align="center"><font color="#00006A" size="4"><strong>March  <p align="center"><font color="#00006A" size="4"><strong>Version
 2000</strong></font></p>  64b, May 2001</strong></font></p>
   
 <hr size="3" color="#EC5E5E">  <hr size="3" color="#EC5E5E">
   
Line 273  weights or covariates, you must fill the Line 273  weights or covariates, you must fill the
 <h2><font color="#00006A">Your first example parameter file</font><a  <h2><font color="#00006A">Your first example parameter file</font><a
 href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>  href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>
   
 <h2><a name="biaspar"></a>#Imach version 0.63, February 2000,  <h2><a name="biaspar"></a>#Imach version 0.64b, May 2001,
 INED-EUROREVES </h2>  INED-EUROREVES </h2>
   
 <p>This is a comment. Comments start with a '#'.</p>  <p>This is a comment. Comments start with a '#'.</p>
Line 365  Additional covariates can be included wi Line 365  Additional covariates can be included wi
     <li>if <strong>model=V1*V2 </strong>the model includes the      <li>if <strong>model=V1*V2 </strong>the model includes the
         product of the first and the second covariate (fields 2          product of the first and the second covariate (fields 2
         and 3)</li>          and 3)</li>
       <li>if <strong>model=V1+V1*age</strong> the model includes
           the product covariate*age</li>
 </ul>  </ul>
   
 <h4><font color="#FF0000">Guess values for optimization</font><font  <h4><font color="#FF0000">Guess values for optimization</font><font
Line 533  and graphs</font> </a></h2> Line 535  and graphs</font> </a></h2>
   
 <p>Once the optimization is finished, some graphics can be made  <p>Once the optimization is finished, some graphics can be made
 with a grapher. We use Gnuplot which is an interactive plotting  with a grapher. We use Gnuplot which is an interactive plotting
 program copyrighted but freely distributed. Imach outputs the  program copyrighted but freely distributed. A gnuplot reference
 source of a gnuplot file, named 'graph.gp', which can be directly  manual is available <a href="http://www.gnuplot.org/">here</a>. <br>
 input into gnuplot.<br>  
 When the running is finished, the user should enter a caracter  When the running is finished, the user should enter a caracter
 for plotting and output editing. </p>  for plotting and output editing. </p>
   
Line 543  for plotting and output editing. </p> Line 544  for plotting and output editing. </p>
   
 <ul>  <ul>
     <li>'c' to start again the program from the beginning.</li>      <li>'c' to start again the program from the beginning.</li>
     <li>'g' to made graphics. The output graphs are in GIF format      <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>
         and you have no control over which is produced. If you          file to edit the output files and graphs. </li>
         want to modify the graphics or make another one, you  
         should modify the parameters in the file <b>graph.gp</b>  
         located in imach\bin. A gnuplot reference manual is  
         available <a  
         href="http://www.cs.dartmouth.edu/gnuplot/gnuplot.html">here</a>.  
     </li>  
     <li>'e' opens the <strong>index.htm</strong> file to edit the  
         output files and graphs. </li>  
     <li>'q' for exiting.</li>      <li>'q' for exiting.</li>
 </ul>  </ul>
   
Line 578  The header of the file is </p> Line 571  The header of the file is </p>
 71 0.99681 625 627 71 0.00319 2 627  71 0.99681 625 627 71 0.00319 2 627
 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>  72 0.97125 1115 1148 72 0.02875 33 1148 </pre>
   
 <pre># Age Prev(1) N(1) N Age Prev(2) N(2) N  
     70 0.95721 604 631 70 0.04279 27 631</pre>  
   
 <p>It means that at age 70, the prevalence in state 1 is 1.000  <p>It means that at age 70, the prevalence in state 1 is 1.000
 and in state 2 is 0.00 . At age 71 the number of individuals in  and in state 2 is 0.00 . At age 71 the number of individuals in
 state 1 is 625 and in state 2 is 2, hence the total number of  state 1 is 625 and in state 2 is 2, hence the total number of
Line 592  covariance matrix</b></font><b>: </b><a Line 582  covariance matrix</b></font><b>: </b><a
   
 <p>This file contains all the maximisation results: </p>  <p>This file contains all the maximisation results: </p>
   
 <pre> Number of iterations=47  <pre> -2 log likelihood= 21660.918613445392
  -2 log likelihood=46553.005854373667     Estimated parameters: a12 = -12.290174 b12 = 0.092161
  Estimated parameters: a12 = -12.691743 b12 = 0.095819                         a13 = -9.155590  b13 = 0.046627
                        a13 = -7.815392   b13 = 0.031851                         a21 = -2.629849  b21 = -0.022030
                        a21 = -1.809895 b21 = -0.030470                         a23 = -7.958519  b23 = 0.042614  
                        a23 = -7.838248  b23 = 0.039490     Covariance matrix: Var(a12) = 1.47453e-001
  Covariance matrix: Var(a12) = 1.03611e-001                      Var(b12) = 2.18676e-005
                     Var(b12) = 1.51173e-005                      Var(a13) = 2.09715e-001
                     Var(a13) = 1.08952e-001                      Var(b13) = 3.28937e-005  
                     Var(b13) = 1.68520e-005                        Var(a21) = 9.19832e-001
                     Var(a21) = 4.82801e-001                      Var(b21) = 1.29229e-004
                     Var(b21) = 6.86392e-005                      Var(a23) = 4.48405e-001
                     Var(a23) = 2.27587e-001                      Var(b23) = 5.85631e-005
                     Var(b23) = 3.04465e-005  
  </pre>   </pre>
   
   <p>By substitution of these parameters in the regression model,
   we obtain the elementary transition probabilities:</p>
   
   <p><img src="pebiaspar1.gif" width="400" height="300"></p>
   
 <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:  <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:
 </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>  </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>
   
Line 617  is a multiple of 2 years. The first colu Line 611  is a multiple of 2 years. The first colu
 the transition probabilities p11, p12, p13, p21, p22, p23. For  the transition probabilities p11, p12, p13, p21, p22, p23. For
 example, line 5 of the file is: </p>  example, line 5 of the file is: </p>
   
 <pre> 100 106 0.03286 0.23512 0.73202 0.02330 0.19210 0.78460 </pre>  <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>
   
 <p>and this means: </p>  <p>and this means: </p>
   
 <pre>p11(100,106)=0.03286  <pre>p11(100,106)=0.02655
 p12(100,106)=0.23512  p12(100,106)=0.17622
 p13(100,106)=0.73202  p13(100,106)=0.79722
 p21(100,106)=0.02330  p21(100,106)=0.01809
 p22(100,106)=0.19210  p22(100,106)=0.13678
 p22(100,106)=0.78460 </pre>  p22(100,106)=0.84513 </pre>
   
 <h5><font color="#EC5E5E" size="3"><b>- </b></font><a  <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
 name="Stationary prevalence in each state"><font color="#EC5E5E"  name="Stationary prevalence in each state"><font color="#EC5E5E"
 size="3"><b>Stationary prevalence in each state</b></font></a><b>:  size="3"><b>Stationary prevalence in each state</b></font></a><b>:
 </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>  </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>
   
 <pre>#Age 1-1 2-2  <pre>#Prevalence
 70 0.92274 0.07726  #Age 1-1 2-2
 71 0.91420 0.08580  
 72 0.90481 0.09519  #************
 73 0.89453 0.10547</pre>  70 0.90134 0.09866
   71 0.89177 0.10823
   72 0.88139 0.11861
   73 0.87015 0.12985 </pre>
   
 <p>At age 70 the stationary prevalence is 0.92274 in state 1 and  <p>At age 70 the stationary prevalence is 0.90134 in state 1 and
 0.07726 in state 2. This stationary prevalence differs from  0.09866 in state 2. This stationary prevalence differs from
 observed prevalence. Here is the point. The observed prevalence  observed prevalence. Here is the point. The observed prevalence
 at age 70 results from the incidence of disability, incidence of  at age 70 results from the incidence of disability, incidence of
 recovery and mortality which occurred in the past of the cohort.  recovery and mortality which occurred in the past of the cohort.
Line 664  design of the survey, and, for the stati Line 661  design of the survey, and, for the stati
 model used and fitted. It is possible to compute the standard  model used and fitted. It is possible to compute the standard
 deviation of the stationary prevalence at each age.</p>  deviation of the stationary prevalence at each age.</p>
   
 <h6><font color="#EC5E5E" size="3">Observed and stationary  <h5><font color="#EC5E5E" size="3">-Observed and stationary
 prevalence in state (2=disable) with the confident interval</font>:<b>  prevalence in state (2=disable) with the confident interval</font>:<b>
 vbiaspar2.gif</b></h6>  </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>
   
 <p><br>  <p>This graph exhibits the stationary prevalence in state (2)
 This graph exhibits the stationary prevalence in state (2) with  with the confidence interval in red. The green curve is the
 the confidence interval in red. The green curve is the observed  observed prevalence (or proportion of individuals in state (2)).
 prevalence (or proportion of individuals in state (2)). Without  Without discussing the results (it is not the purpose here), we
 discussing the results (it is not the purpose here), we observe  observe that the green curve is rather below the stationary
 that the green curve is rather below the stationary prevalence.  prevalence. It suggests an increase of the disability prevalence
 It suggests an increase of the disability prevalence in the  in the future.</p>
 future.</p>  
   <p><img src="vbiaspar21.gif" width="400" height="300"></p>
 <p><img src="vbiaspar2.gif" width="400" height="300"></p>  
   <h5><font color="#EC5E5E" size="3"><b>-Convergence to the
 <h6><font color="#EC5E5E" size="3"><b>Convergence to the  stationary prevalence of disability</b></font><b>: </b><a
 stationary prevalence of disability</b></font><b>: pbiaspar1.gif</b><br>  href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>
 <img src="pbiaspar1.gif" width="400" height="300"> </h6>  <img src="pbiaspar11.gif" width="400" height="300"> </h5>
   
 <p>This graph plots the conditional transition probabilities from  <p>This graph plots the conditional transition probabilities from
 an initial state (1=healthy in red at the bottom, or 2=disable in  an initial state (1=healthy in red at the bottom, or 2=disable in
Line 703  href="erbiaspar.txt"><b>erbiaspar.txt</b Line 700  href="erbiaspar.txt"><b>erbiaspar.txt</b
   
 <pre># Health expectancies  <pre># Health expectancies
 # Age 1-1 1-2 2-1 2-2  # Age 1-1 1-2 2-1 2-2
 70 10.7297 2.7809 6.3440 5.9813  70 10.9226 3.0401 5.6488 6.2122
 71 10.3078 2.8233 5.9295 5.9959  71 10.4384 3.0461 5.2477 6.1599
 72 9.8927 2.8643 5.5305 6.0033  72 9.9667 3.0502 4.8663 6.1025
 73 9.4848 2.9036 5.1474 6.0035 </pre>  73 9.5077 3.0524 4.5044 6.0401 </pre>
   
 <pre>For example 70 10.7297 2.7809 6.3440 5.9813 means:  <pre>For example 70 10.9226 3.0401 5.6488 6.2122 means:
 e11=10.7297 e12=2.7809 e21=6.3440 e22=5.9813</pre>  e11=10.9226 e12=3.0401 e21=5.6488 e22=6.2122</pre>
   
 <pre><img src="exbiaspar1.gif" width="400" height="300"><img  <pre><img src="expbiaspar21.gif" width="400" height="300"><img
 src="exbiaspar2.gif" width="400" height="300"></pre>  src="expbiaspar11.gif" width="400" height="300"></pre>
   
 <p>For example, life expectancy of a healthy individual at age 70  <p>For example, life expectancy of a healthy individual at age 70
 is 10.73 in the healthy state and 2.78 in the disability state  is 10.92 in the healthy state and 3.04 in the disability state
 (=13.51 years). If he was disable at age 70, his life expectancy  (=13.96 years). If he was disable at age 70, his life expectancy
 will be shorter, 6.34 in the healthy state and 5.98 in the  will be shorter, 5.64 in the healthy state and 6.21 in the
 disability state (=12.32 years). The total life expectancy is a  disability state (=11.85 years). The total life expectancy is a
 weighted mean of both, 13.51 and 12.32; weight is the proportion  weighted mean of both, 13.96 and 11.85; weight is the proportion
 of people disabled at age 70. In order to get a pure period index  of people disabled at age 70. In order to get a pure period index
 (i.e. based only on incidences) we use the <a  (i.e. based only on incidences) we use the <a
 href="#Stationary prevalence in each state">computed or  href="#Stationary prevalence in each state">computed or
Line 736  href="vrbiaspar.txt"><b>vrbiaspar.txt</b Line 733  href="vrbiaspar.txt"><b>vrbiaspar.txt</b
 <p>For example, the covariances of life expectancies Cov(ei,ej)  <p>For example, the covariances of life expectancies Cov(ei,ej)
 at age 50 are (line 3) </p>  at age 50 are (line 3) </p>
   
 <pre>   Cov(e1,e1)=0.4667  Cov(e1,e2)=0.0605=Cov(e2,e1)  Cov(e2,e2)=0.0183</pre>  <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>
   
 <h5><font color="#EC5E5E" size="3"><b>- </b></font><a  <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
 name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health  name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health
Line 746  href="trbiaspar.txt"><font face="Courier Line 743  href="trbiaspar.txt"><font face="Courier
   
 <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>  <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>
   
 <pre>70 13.42 (0.18) 10.39 (0.15) 3.03 (0.10)70 13.81 (0.18) 11.28 (0.14) 2.53 (0.09) </pre>  <pre>70 13.76 (0.22) 10.40 (0.20) 3.35 (0.14) </pre>
   
 <p>Thus, at age 70 the total life expectancy, e..=13.42 years is  <p>Thus, at age 70 the total life expectancy, e..=13.76years is
 the weighted mean of e1.=13.51 and e2.=12.32 by the stationary  the weighted mean of e1.=13.96 and e2.=11.85 by the stationary
 prevalence at age 70 which are 0.92274 in state 1 and 0.07726 in  prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
 state 2, respectively (the sum is equal to one). e.1=10.39 is the  state 2, respectively (the sum is equal to one). e.1=10.40 is the
 Disability-free life expectancy at age 70 (it is again a weighted  Disability-free life expectancy at age 70 (it is again a weighted
 mean of e11 and e21). e.2=3.03 is also the life expectancy at age  mean of e11 and e21). e.2=3.35 is also the life expectancy at age
 70 to be spent in the disability state.</p>  70 to be spent in the disability state.</p>
   
 <h6><font color="#EC5E5E" size="3"><b>Total life expectancy by  <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by
 age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:  age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:
 ebiaspar.gif</b></h6>  </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>
   
 <p>This figure represents the health expectancies and the total  <p>This figure represents the health expectancies and the total
 life expectancy with the confident interval in dashed curve. </p>  life expectancy with the confident interval in dashed curve. </p>
   
 <pre>        <img src="ebiaspar.gif" width="400" height="300"></pre>  <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>
   
 <p>Standard deviations (obtained from the information matrix of  <p>Standard deviations (obtained from the information matrix of
 the model) of these quantities are very useful.  the model) of these quantities are very useful.
Line 826  estimated by month on 8,000 people may t Line 823  estimated by month on 8,000 people may t
 Also, the program is not yet a statistical package, which permits  Also, the program is not yet a statistical package, which permits
 a simple writing of the variables and the model to take into  a simple writing of the variables and the model to take into
 account in the maximisation. The actual program allows only to  account in the maximisation. The actual program allows only to
 add simple variables without covariations, like age+sex but  add simple variables like age+sex or age+sex+ age*sex but will
 without age+sex+ age*sex . This can be done from the source code  
 (you have to change three lines in the source code) but will  
 never be general enough. But what is to remember, is that  never be general enough. But what is to remember, is that
 incidences or probability of change from one state to another is  incidences or probability of change from one state to another is
 affected by the variables specified into the model.</p>  affected by the variables specified into the model.</p>
Line 859  program while saving the old output file Line 854  program while saving the old output file
   
 <p>Since you know how to run the program, it is time to test it  <p>Since you know how to run the program, it is time to test it
 on your own computer. Try for example on a parameter file named <a  on your own computer. Try for example on a parameter file named <a
 href="file://../mytry/imachpar.txt">imachpar.txt</a> which is a  href="..\mytry\imachpar.txt">imachpar.txt</a> which is a copy of <font
 copy of <font size="2" face="Courier New">mypar.txt</font>  size="2" face="Courier New">mypar.txt</font> included in the
 included in the subdirectory of imach, <font size="2"  subdirectory of imach, <font size="2" face="Courier New">mytry</font>.
 face="Courier New">mytry</font>. Edit it to change the name of  Edit it to change the name of the data file to <font size="2"
 the data file to <font size="2" face="Courier New">..\data\mydata.txt</font>  face="Courier New">..\data\mydata.txt</font> if you don't want to
 if you don't want to copy it on the same directory. The file <font  copy it on the same directory. The file <font face="Courier New">mydata.txt</font>
 face="Courier New">mydata.txt</font> is a smaller file of 3,000  is a smaller file of 3,000 people but still with 4 waves. </p>
 people but still with 4 waves. </p>  
   
 <p>Click on the imach.exe icon to open a window. Answer to the  <p>Click on the imach.exe icon to open a window. Answer to the
 question:'<strong>Enter the parameter file name:'</strong></p>  question:'<strong>Enter the parameter file name:'</strong></p>
   
 <table border="1">  <table border="1">
     <tr>      <tr>
         <td width="100%"><strong>IMACH, Version 0.63</strong><p><strong>Enter          <td width="100%"><strong>IMACH, Version 0.64b</strong><p><strong>Enter
         the parameter file name: ..\mytry\imachpar.txt</strong></p>          the parameter file name: ..\mytry\imachpar.txt</strong></p>
         </td>          </td>
     </tr>      </tr>
Line 983  requires a caracter:</font></p> Line 977  requires a caracter:</font></p>
   
 <table border="1">  <table border="1">
     <tr>      <tr>
         <td width="100%"><strong>Type g for plotting (available          <td width="100%"><strong>Type e to edit output files, c
         if mle=1), e to edit output files, c to start again,</strong><p><strong>and          to start again, and q for exiting:</strong></td>
         q for exiting:</strong></p>  
         </td>  
     </tr>      </tr>
 </table>  </table>
   
 <p><font size="3">First you should enter <strong>g</strong> to  <p><font size="3">First you should enter <strong>e </strong>to
 make the figures and then you can edit all the results by typing <strong>e</strong>.  edit the master file mypar.htm. </font></p>
 </font></p>  
   
 <ul>  <ul>
     <li><u>Outputs files</u> <br>      <li><u>Outputs files</u> <br>
         - index.htm, this file is the master file on which you          <br>
         should click first.<br>  
         - Observed prevalence in each state: <a          - Observed prevalence in each state: <a
         href="..\mytry\prmypar.txt">mypar.txt</a> <br>          href="..\mytry\prmypar.txt">pmypar.txt</a> <br>
         - Estimated parameters and the covariance matrix: <a          - Estimated parameters and the covariance matrix: <a
         href="..\mytry\rmypar.txt">rmypar.txt</a> <br>          href="..\mytry\rmypar.txt">rmypar.txt</a> <br>
         - Stationary prevalence in each state: <a          - Stationary prevalence in each state: <a
Line 1021  make the figures and then you can edit a Line 1011  make the figures and then you can edit a
         </li>          </li>
     <li><u>Graphs</u> <br>      <li><u>Graphs</u> <br>
         <br>          <br>
         -<a href="..\mytry\vmypar1.gif">Observed and stationary          -<a href="../mytry/pemypar1.gif">One-step transition
           probabilities</a><br>
           -<a href="../mytry/pmypar11.gif">Convergence to the
           stationary prevalence</a><br>
           -<a href="..\mytry\vmypar11.gif">Observed and stationary
         prevalence in state (1) with the confident interval</a> <br>          prevalence in state (1) with the confident interval</a> <br>
         -<a href="..\mytry\vmypar2.gif">Observed and stationary          -<a href="..\mytry\vmypar21.gif">Observed and stationary
         prevalence in state (2) with the confident interval</a> <br>          prevalence in state (2) with the confident interval</a> <br>
         -<a href="..\mytry\exmypar1.gif">Health life expectancies          -<a href="..\mytry\expmypar11.gif">Health life
         by age and initial health state (1)</a> <br>          expectancies by age and initial health state (1)</a> <br>
         -<a href="..\mytry\exmypar2.gif">Health life expectancies          -<a href="..\mytry\expmypar21.gif">Health life
         by age and initial health state (2)</a> <br>          expectancies by age and initial health state (2)</a> <br>
         -<a href="..\mytry\emypar.gif">Total life expectancy by          -<a href="..\mytry\emypar1.gif">Total life expectancy by
         age and health expectancies in states (1) and (2).</a> </li>          age and health expectancies in states (1) and (2).</a> </li>
 </ul>  </ul>
   
Line 1043  simple justification (name, email, insti Line 1037  simple justification (name, email, insti
 href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a  href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a
 href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>  href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>
   
 <p>Latest version (0.63 of 16 march 2000) can be accessed at <a  <p>Latest version (0.64b of may 2001) can be accessed at <a
 href="http://euroeves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>  href="http://euroeves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>
 </p>  </p>
 </body>  </body>

Removed from v.1.2  
changed lines
  Added in v.1.3


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>