|
|
| version 1.9, 2002/03/11 15:24:05 | version 1.10, 2002/03/11 22:26:00 |
|---|---|
| Line 430 a large stepm i.e stepm=12 or 24 and the | Line 430 a large stepm i.e stepm=12 or 24 and the |
| stepm=1 month. If newstepm is the new shorter stepm and stepm can be | stepm=1 month. If newstepm is the new shorter stepm and stepm can be |
| expressed as a multiple of newstepm, like newstepm=n stepm, then the | expressed as a multiple of newstepm, like newstepm=n stepm, then the |
| following approximation holds: | following approximation holds: |
| <pre>aij(n stepm) = aij(stepm) +ln(n) | <pre>aij(stepm) = aij(n . stepm) - ln(n) |
| </pre> and | </pre> and |
| <pre>bij(n stepm) = bij(stepm) .</pre> | <pre>bij(stepm) = bij(n . stepm) .</pre> |
| <p> For example if you already ran for a 6 months interval and | |
| got:<br> | |
| <pre># Parameters | |
| 12 -13.390179 0.126133 | |
| 13 -7.493460 0.048069 | |
| 21 0.575975 -0.041322 | |
| 23 -4.748678 0.030626 | |
| </pre> | |
| If you now want to get the monthly estimates, you can guess the aij by | |
| substracting ln(6)= 1,7917<br> and running<br> | |
| <pre>12 -15.18193847 0.126133 | |
| 13 -9.285219469 0.048069 | |
| 21 -1.215784469 -0.041322 | |
| 23 -6.540437469 0.030626 | |
| </pre> | |
| and get<br> | |
| <pre>12 -15.029768 0.124347 | |
| 13 -8.472981 0.036599 | |
| 21 -1.472527 -0.038394 | |
| 23 -6.553602 0.029856 | |
| </br> | |
| which is closer to the results. The approximation is probably useful | |
| only for very small intervals and we don't have enough experience to | |
| know if you will speed up the convergence or not. | |
| <pre> -ln(12)= -2.484 | |
| -ln(6/1)=-ln(6)= -1.791 | |
| -ln(3/1)=-ln(3)= -1.0986 | |
| -ln(12/6)=-ln(2)= -0.693 | |
| </pre> | |
| <h4><font color="#FF0000">Guess values for computing variances</font></h4> | <h4><font color="#FF0000">Guess values for computing variances</font></h4> |
| <p>This is an output if <a href="#mle">mle</a>=1. But it can be | <p>This is an output if <a href="#mle">mle</a>=1. But it can be |