version 1.9, 2002/03/11 15:24:05
|
version 1.10, 2002/03/11 22:26:00
|
Line 430 a large stepm i.e stepm=12 or 24 and the
|
Line 430 a large stepm i.e stepm=12 or 24 and the
|
stepm=1 month. If newstepm is the new shorter stepm and stepm can be
|
stepm=1 month. If newstepm is the new shorter stepm and stepm can be
|
expressed as a multiple of newstepm, like newstepm=n stepm, then the
|
expressed as a multiple of newstepm, like newstepm=n stepm, then the
|
following approximation holds:
|
following approximation holds:
|
<pre>aij(n stepm) = aij(stepm) +ln(n)
|
<pre>aij(stepm) = aij(n . stepm) - ln(n)
|
</pre> and
|
</pre> and
|
<pre>bij(n stepm) = bij(stepm) .</pre>
|
<pre>bij(stepm) = bij(n . stepm) .</pre>
|
|
|
|
<p> For example if you already ran for a 6 months interval and
|
|
got:<br>
|
|
<pre># Parameters
|
|
12 -13.390179 0.126133
|
|
13 -7.493460 0.048069
|
|
21 0.575975 -0.041322
|
|
23 -4.748678 0.030626
|
|
</pre>
|
|
If you now want to get the monthly estimates, you can guess the aij by
|
|
substracting ln(6)= 1,7917<br> and running<br>
|
|
<pre>12 -15.18193847 0.126133
|
|
13 -9.285219469 0.048069
|
|
21 -1.215784469 -0.041322
|
|
23 -6.540437469 0.030626
|
|
</pre>
|
|
and get<br>
|
|
<pre>12 -15.029768 0.124347
|
|
13 -8.472981 0.036599
|
|
21 -1.472527 -0.038394
|
|
23 -6.553602 0.029856
|
|
</br>
|
|
which is closer to the results. The approximation is probably useful
|
|
only for very small intervals and we don't have enough experience to
|
|
know if you will speed up the convergence or not.
|
|
<pre> -ln(12)= -2.484
|
|
-ln(6/1)=-ln(6)= -1.791
|
|
-ln(3/1)=-ln(3)= -1.0986
|
|
-ln(12/6)=-ln(2)= -0.693
|
|
</pre>
|
|
|
<h4><font color="#FF0000">Guess values for computing variances</font></h4>
|
<h4><font color="#FF0000">Guess values for computing variances</font></h4>
|
|
|
<p>This is an output if <a href="#mle">mle</a>=1. But it can be
|
<p>This is an output if <a href="#mle">mle</a>=1. But it can be
|