Annotation of imach096d/src/imach.c, revision 1.7
1.2 lievre 1:
2: /*********************** Imach **************************************
3: This program computes Healthy Life Expectancies from cross-longitudinal
4: data. Cross-longitudinal consist in a first survey ("cross") where
5: individuals from different ages are interviewed on their health status
6: or degree of disability. At least a second wave of interviews
7: ("longitudinal") should measure each new individual health status.
8: Health expectancies are computed from the transistions observed between
9: waves and are computed for each degree of severity of disability (number
10: of life states). More degrees you consider, more time is necessary to
11: reach the Maximum Likelihood of the parameters involved in the model.
12: The simplest model is the multinomial logistic model where pij is
13: the probabibility to be observed in state j at the second wave conditional
14: to be observed in state i at the first wave. Therefore the model is:
15: log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'
16: is a covariate. If you want to have a more complex model than "constant and
17: age", you should modify the program where the markup
18: *Covariates have to be included here again* invites you to do it.
19: More covariates you add, less is the speed of the convergence.
20:
21: The advantage that this computer programme claims, comes from that if the
22: delay between waves is not identical for each individual, or if some
23: individual missed an interview, the information is not rounded or lost, but
24: taken into account using an interpolation or extrapolation.
25: hPijx is the probability to be
26: observed in state i at age x+h conditional to the observed state i at age
27: x. The delay 'h' can be split into an exact number (nh*stepm) of
28: unobserved intermediate states. This elementary transition (by month or
29: quarter trimester, semester or year) is model as a multinomial logistic.
30: The hPx matrix is simply the matrix product of nh*stepm elementary matrices
31: and the contribution of each individual to the likelihood is simply hPijx.
32:
33: Also this programme outputs the covariance matrix of the parameters but also
34: of the life expectancies. It also computes the prevalence limits.
35:
36: Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
37: Institut national d'études démographiques, Paris.
38: This software have been partly granted by Euro-REVES, a concerted action
39: from the European Union.
40: It is copyrighted identically to a GNU software product, ie programme and
41: software can be distributed freely for non commercial use. Latest version
42: can be accessed at http://euroreves.ined.fr/imach .
43: **********************************************************************/
44:
45: #include <math.h>
46: #include <stdio.h>
47: #include <stdlib.h>
48: #include <unistd.h>
49:
50: #define MAXLINE 256
51: #define FILENAMELENGTH 80
52: /*#define DEBUG*/
53: #define windows
1.5 lievre 54: #define GLOCK_ERROR_NOPATH -1 /* empty path */
55: #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */
56:
1.2 lievre 57: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
58: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
59:
60: #define NINTERVMAX 8
61: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
62: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
63: #define NCOVMAX 8 /* Maximum number of covariates */
1.3 lievre 64: #define MAXN 20000
1.2 lievre 65: #define YEARM 12. /* Number of months per year */
66: #define AGESUP 130
67: #define AGEBASE 40
68:
69:
70: int nvar;
71: static int cptcov;
1.7 ! lievre 72: int cptcovn, cptcovage=0, cptcoveff=0;
1.2 lievre 73: int npar=NPARMAX;
74: int nlstate=2; /* Number of live states */
75: int ndeath=1; /* Number of dead states */
76: int ncovmodel, ncov; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
77:
78: int *wav; /* Number of waves for this individuual 0 is possible */
79: int maxwav; /* Maxim number of waves */
80: int mle, weightopt;
81: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
82: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
83: double **oldm, **newm, **savm; /* Working pointers to matrices */
84: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
85: FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest;
86: FILE *ficgp, *fichtm;
87: FILE *ficreseij;
88: char filerese[FILENAMELENGTH];
89: FILE *ficresvij;
90: char fileresv[FILENAMELENGTH];
91: FILE *ficresvpl;
92: char fileresvpl[FILENAMELENGTH];
93:
94: #define NR_END 1
95: #define FREE_ARG char*
96: #define FTOL 1.0e-10
97:
98: #define NRANSI
99: #define ITMAX 200
100:
101: #define TOL 2.0e-4
102:
103: #define CGOLD 0.3819660
104: #define ZEPS 1.0e-10
105: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
106:
107: #define GOLD 1.618034
108: #define GLIMIT 100.0
109: #define TINY 1.0e-20
110:
111: static double maxarg1,maxarg2;
112: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
113: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
114:
115: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
116: #define rint(a) floor(a+0.5)
117:
118: static double sqrarg;
119: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
120: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
121:
122: int imx;
123: int stepm;
124: /* Stepm, step in month: minimum step interpolation*/
125:
126: int m,nb;
1.6 lievre 127: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
1.2 lievre 128: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
129: double **pmmij;
130:
131: double *weight;
132: int **s; /* Status */
133: double *agedc, **covar, idx;
1.7 ! lievre 134: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.2 lievre 135:
136: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
137: double ftolhess; /* Tolerance for computing hessian */
138:
1.7 ! lievre 139: /**************** split *************************/
1.5 lievre 140: static int split( char *path, char *dirc, char *name )
141: {
142: char *s; /* pointer */
143: int l1, l2; /* length counters */
144:
145: l1 = strlen( path ); /* length of path */
146: if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
147: s = strrchr( path, '\\' ); /* find last / */
148: if ( s == NULL ) { /* no directory, so use current */
149: #if defined(__bsd__) /* get current working directory */
150: extern char *getwd( );
151:
152: if ( getwd( dirc ) == NULL ) {
153: #else
154: extern char *getcwd( );
155:
156: if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
157: #endif
158: return( GLOCK_ERROR_GETCWD );
159: }
160: strcpy( name, path ); /* we've got it */
161: } else { /* strip direcotry from path */
162: s++; /* after this, the filename */
163: l2 = strlen( s ); /* length of filename */
164: if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
165: strcpy( name, s ); /* save file name */
166: strncpy( dirc, path, l1 - l2 ); /* now the directory */
167: dirc[l1-l2] = 0; /* add zero */
168: }
169: l1 = strlen( dirc ); /* length of directory */
170: if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
171: return( 0 ); /* we're done */
172: }
173:
174:
1.2 lievre 175: /******************************************/
176:
177: void replace(char *s, char*t)
178: {
179: int i;
180: int lg=20;
181: i=0;
182: lg=strlen(t);
183: for(i=0; i<= lg; i++) {
184: (s[i] = t[i]);
185: if (t[i]== '\\') s[i]='/';
186: }
187: }
188:
189: int nbocc(char *s, char occ)
190: {
191: int i,j=0;
192: int lg=20;
193: i=0;
194: lg=strlen(s);
195: for(i=0; i<= lg; i++) {
196: if (s[i] == occ ) j++;
197: }
198: return j;
199: }
200:
201: void cutv(char *u,char *v, char*t, char occ)
202: {
1.6 lievre 203: int i,lg,j,p=0;
1.2 lievre 204: i=0;
205: for(j=0; j<=strlen(t)-1; j++) {
1.3 lievre 206: if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
1.2 lievre 207: }
208:
209: lg=strlen(t);
210: for(j=0; j<p; j++) {
211: (u[j] = t[j]);
212: }
1.6 lievre 213: u[p]='\0';
1.2 lievre 214:
215: for(j=0; j<= lg; j++) {
216: if (j>=(p+1))(v[j-p-1] = t[j]);
217: }
218: }
219:
220: /********************** nrerror ********************/
221:
222: void nrerror(char error_text[])
223: {
224: fprintf(stderr,"ERREUR ...\n");
225: fprintf(stderr,"%s\n",error_text);
226: exit(1);
227: }
228: /*********************** vector *******************/
229: double *vector(int nl, int nh)
230: {
231: double *v;
232: v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
233: if (!v) nrerror("allocation failure in vector");
234: return v-nl+NR_END;
235: }
236:
237: /************************ free vector ******************/
238: void free_vector(double*v, int nl, int nh)
239: {
240: free((FREE_ARG)(v+nl-NR_END));
241: }
242:
243: /************************ivector *******************************/
244: int *ivector(long nl,long nh)
245: {
246: int *v;
247: v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
248: if (!v) nrerror("allocation failure in ivector");
249: return v-nl+NR_END;
250: }
251:
252: /******************free ivector **************************/
253: void free_ivector(int *v, long nl, long nh)
254: {
255: free((FREE_ARG)(v+nl-NR_END));
256: }
257:
258: /******************* imatrix *******************************/
259: int **imatrix(long nrl, long nrh, long ncl, long nch)
260: /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
261: {
262: long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
263: int **m;
264:
265: /* allocate pointers to rows */
266: m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
267: if (!m) nrerror("allocation failure 1 in matrix()");
268: m += NR_END;
269: m -= nrl;
270:
271:
272: /* allocate rows and set pointers to them */
273: m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
274: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
275: m[nrl] += NR_END;
276: m[nrl] -= ncl;
277:
278: for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
279:
280: /* return pointer to array of pointers to rows */
281: return m;
282: }
283:
284: /****************** free_imatrix *************************/
285: void free_imatrix(m,nrl,nrh,ncl,nch)
286: int **m;
287: long nch,ncl,nrh,nrl;
288: /* free an int matrix allocated by imatrix() */
289: {
290: free((FREE_ARG) (m[nrl]+ncl-NR_END));
291: free((FREE_ARG) (m+nrl-NR_END));
292: }
293:
294: /******************* matrix *******************************/
295: double **matrix(long nrl, long nrh, long ncl, long nch)
296: {
297: long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
298: double **m;
299:
300: m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
301: if (!m) nrerror("allocation failure 1 in matrix()");
302: m += NR_END;
303: m -= nrl;
304:
305: m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
306: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
307: m[nrl] += NR_END;
308: m[nrl] -= ncl;
309:
310: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
311: return m;
312: }
313:
314: /*************************free matrix ************************/
315: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
316: {
317: free((FREE_ARG)(m[nrl]+ncl-NR_END));
318: free((FREE_ARG)(m+nrl-NR_END));
319: }
320:
321: /******************* ma3x *******************************/
322: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
323: {
324: long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
325: double ***m;
326:
327: m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
328: if (!m) nrerror("allocation failure 1 in matrix()");
329: m += NR_END;
330: m -= nrl;
331:
332: m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
333: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
334: m[nrl] += NR_END;
335: m[nrl] -= ncl;
336:
337: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
338:
339: m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
340: if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
341: m[nrl][ncl] += NR_END;
342: m[nrl][ncl] -= nll;
343: for (j=ncl+1; j<=nch; j++)
344: m[nrl][j]=m[nrl][j-1]+nlay;
345:
346: for (i=nrl+1; i<=nrh; i++) {
347: m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
348: for (j=ncl+1; j<=nch; j++)
349: m[i][j]=m[i][j-1]+nlay;
350: }
351: return m;
352: }
353:
354: /*************************free ma3x ************************/
355: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
356: {
357: free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
358: free((FREE_ARG)(m[nrl]+ncl-NR_END));
359: free((FREE_ARG)(m+nrl-NR_END));
360: }
361:
362: /***************** f1dim *************************/
363: extern int ncom;
364: extern double *pcom,*xicom;
365: extern double (*nrfunc)(double []);
366:
367: double f1dim(double x)
368: {
369: int j;
370: double f;
371: double *xt;
372:
373: xt=vector(1,ncom);
374: for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
375: f=(*nrfunc)(xt);
376: free_vector(xt,1,ncom);
377: return f;
378: }
379:
380: /*****************brent *************************/
381: double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
382: {
383: int iter;
384: double a,b,d,etemp;
385: double fu,fv,fw,fx;
386: double ftemp;
387: double p,q,r,tol1,tol2,u,v,w,x,xm;
388: double e=0.0;
389:
390: a=(ax < cx ? ax : cx);
391: b=(ax > cx ? ax : cx);
392: x=w=v=bx;
393: fw=fv=fx=(*f)(x);
394: for (iter=1;iter<=ITMAX;iter++) {
395: xm=0.5*(a+b);
396: tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
397: /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
398: printf(".");fflush(stdout);
399: #ifdef DEBUG
400: printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
401: /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
402: #endif
403: if (fabs(x-xm) <= (tol2-0.5*(b-a))){
404: *xmin=x;
405: return fx;
406: }
407: ftemp=fu;
408: if (fabs(e) > tol1) {
409: r=(x-w)*(fx-fv);
410: q=(x-v)*(fx-fw);
411: p=(x-v)*q-(x-w)*r;
412: q=2.0*(q-r);
413: if (q > 0.0) p = -p;
414: q=fabs(q);
415: etemp=e;
416: e=d;
417: if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
418: d=CGOLD*(e=(x >= xm ? a-x : b-x));
419: else {
420: d=p/q;
421: u=x+d;
422: if (u-a < tol2 || b-u < tol2)
423: d=SIGN(tol1,xm-x);
424: }
425: } else {
426: d=CGOLD*(e=(x >= xm ? a-x : b-x));
427: }
428: u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
429: fu=(*f)(u);
430: if (fu <= fx) {
431: if (u >= x) a=x; else b=x;
432: SHFT(v,w,x,u)
433: SHFT(fv,fw,fx,fu)
434: } else {
435: if (u < x) a=u; else b=u;
436: if (fu <= fw || w == x) {
437: v=w;
438: w=u;
439: fv=fw;
440: fw=fu;
441: } else if (fu <= fv || v == x || v == w) {
442: v=u;
443: fv=fu;
444: }
445: }
446: }
447: nrerror("Too many iterations in brent");
448: *xmin=x;
449: return fx;
450: }
451:
452: /****************** mnbrak ***********************/
453:
454: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
455: double (*func)(double))
456: {
457: double ulim,u,r,q, dum;
458: double fu;
459:
460: *fa=(*func)(*ax);
461: *fb=(*func)(*bx);
462: if (*fb > *fa) {
463: SHFT(dum,*ax,*bx,dum)
464: SHFT(dum,*fb,*fa,dum)
465: }
466: *cx=(*bx)+GOLD*(*bx-*ax);
467: *fc=(*func)(*cx);
468: while (*fb > *fc) {
469: r=(*bx-*ax)*(*fb-*fc);
470: q=(*bx-*cx)*(*fb-*fa);
471: u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
472: (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
473: ulim=(*bx)+GLIMIT*(*cx-*bx);
474: if ((*bx-u)*(u-*cx) > 0.0) {
475: fu=(*func)(u);
476: } else if ((*cx-u)*(u-ulim) > 0.0) {
477: fu=(*func)(u);
478: if (fu < *fc) {
479: SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
480: SHFT(*fb,*fc,fu,(*func)(u))
481: }
482: } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
483: u=ulim;
484: fu=(*func)(u);
485: } else {
486: u=(*cx)+GOLD*(*cx-*bx);
487: fu=(*func)(u);
488: }
489: SHFT(*ax,*bx,*cx,u)
490: SHFT(*fa,*fb,*fc,fu)
491: }
492: }
493:
494: /*************** linmin ************************/
495:
496: int ncom;
497: double *pcom,*xicom;
498: double (*nrfunc)(double []);
499:
500: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
501: {
502: double brent(double ax, double bx, double cx,
503: double (*f)(double), double tol, double *xmin);
504: double f1dim(double x);
505: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
506: double *fc, double (*func)(double));
507: int j;
508: double xx,xmin,bx,ax;
509: double fx,fb,fa;
510:
511: ncom=n;
512: pcom=vector(1,n);
513: xicom=vector(1,n);
514: nrfunc=func;
515: for (j=1;j<=n;j++) {
516: pcom[j]=p[j];
517: xicom[j]=xi[j];
518: }
519: ax=0.0;
520: xx=1.0;
521: mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
522: *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
523: #ifdef DEBUG
524: printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
525: #endif
526: for (j=1;j<=n;j++) {
527: xi[j] *= xmin;
528: p[j] += xi[j];
529: }
530: free_vector(xicom,1,n);
531: free_vector(pcom,1,n);
532: }
533:
534: /*************** powell ************************/
535: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
536: double (*func)(double []))
537: {
538: void linmin(double p[], double xi[], int n, double *fret,
539: double (*func)(double []));
540: int i,ibig,j;
541: double del,t,*pt,*ptt,*xit;
542: double fp,fptt;
543: double *xits;
544: pt=vector(1,n);
545: ptt=vector(1,n);
546: xit=vector(1,n);
547: xits=vector(1,n);
548: *fret=(*func)(p);
549: for (j=1;j<=n;j++) pt[j]=p[j];
550: for (*iter=1;;++(*iter)) {
551: fp=(*fret);
552: ibig=0;
553: del=0.0;
554: printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
555: for (i=1;i<=n;i++)
556: printf(" %d %.12f",i, p[i]);
557: printf("\n");
558: for (i=1;i<=n;i++) {
559: for (j=1;j<=n;j++) xit[j]=xi[j][i];
560: fptt=(*fret);
561: #ifdef DEBUG
562: printf("fret=%lf \n",*fret);
563: #endif
564: printf("%d",i);fflush(stdout);
565: linmin(p,xit,n,fret,func);
566: if (fabs(fptt-(*fret)) > del) {
567: del=fabs(fptt-(*fret));
568: ibig=i;
569: }
570: #ifdef DEBUG
571: printf("%d %.12e",i,(*fret));
572: for (j=1;j<=n;j++) {
573: xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
574: printf(" x(%d)=%.12e",j,xit[j]);
575: }
576: for(j=1;j<=n;j++)
577: printf(" p=%.12e",p[j]);
578: printf("\n");
579: #endif
580: }
581: if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
582: #ifdef DEBUG
583: int k[2],l;
584: k[0]=1;
585: k[1]=-1;
586: printf("Max: %.12e",(*func)(p));
587: for (j=1;j<=n;j++)
588: printf(" %.12e",p[j]);
589: printf("\n");
590: for(l=0;l<=1;l++) {
591: for (j=1;j<=n;j++) {
592: ptt[j]=p[j]+(p[j]-pt[j])*k[l];
593: printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
594: }
595: printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
596: }
597: #endif
598:
599:
600: free_vector(xit,1,n);
601: free_vector(xits,1,n);
602: free_vector(ptt,1,n);
603: free_vector(pt,1,n);
604: return;
605: }
606: if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
607: for (j=1;j<=n;j++) {
608: ptt[j]=2.0*p[j]-pt[j];
609: xit[j]=p[j]-pt[j];
610: pt[j]=p[j];
611: }
612: fptt=(*func)(ptt);
613: if (fptt < fp) {
614: t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
615: if (t < 0.0) {
616: linmin(p,xit,n,fret,func);
617: for (j=1;j<=n;j++) {
618: xi[j][ibig]=xi[j][n];
619: xi[j][n]=xit[j];
620: }
621: #ifdef DEBUG
622: printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
623: for(j=1;j<=n;j++)
624: printf(" %.12e",xit[j]);
625: printf("\n");
626: #endif
627: }
628: }
629: }
630: }
631:
632: /**** Prevalence limit ****************/
633:
634: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
635: {
636: /* Computes the prevalence limit in each live state at age x by left multiplying the unit
637: matrix by transitions matrix until convergence is reached */
638:
639: int i, ii,j,k;
640: double min, max, maxmin, maxmax,sumnew=0.;
641: double **matprod2();
642: double **out, cov[NCOVMAX], **pmij();
643: double **newm;
644: double agefin, delaymax=50 ; /* Max number of years to converge */
645:
646: for (ii=1;ii<=nlstate+ndeath;ii++)
647: for (j=1;j<=nlstate+ndeath;j++){
648: oldm[ii][j]=(ii==j ? 1.0 : 0.0);
649: }
1.6 lievre 650:
651: cov[1]=1.;
652:
653: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.2 lievre 654: for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
655: newm=savm;
656: /* Covariates have to be included here again */
1.6 lievre 657: cov[2]=agefin;
658:
659: for (k=1; k<=cptcovn;k++) {
1.7 ! lievre 660: cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
! 661: /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/
1.6 lievre 662: }
663: for (k=1; k<=cptcovage;k++)
664: cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.7 ! lievre 665: for (k=1; k<=cptcovprod;k++)
! 666: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
! 667:
! 668: /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
! 669:
! 670: /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
! 671:
1.2 lievre 672: out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
673:
674: savm=oldm;
675: oldm=newm;
676: maxmax=0.;
677: for(j=1;j<=nlstate;j++){
678: min=1.;
679: max=0.;
680: for(i=1; i<=nlstate; i++) {
681: sumnew=0;
682: for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
683: prlim[i][j]= newm[i][j]/(1-sumnew);
684: max=FMAX(max,prlim[i][j]);
685: min=FMIN(min,prlim[i][j]);
686: }
687: maxmin=max-min;
688: maxmax=FMAX(maxmax,maxmin);
689: }
690: if(maxmax < ftolpl){
691: return prlim;
692: }
693: }
694: }
695:
696: /*************** transition probabilities **********/
697:
698: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
699: {
700: double s1, s2;
701: /*double t34;*/
702: int i,j,j1, nc, ii, jj;
703:
704: for(i=1; i<= nlstate; i++){
705: for(j=1; j<i;j++){
706: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
707: /*s2 += param[i][j][nc]*cov[nc];*/
708: s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
709: /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
710: }
711: ps[i][j]=s2;
712: /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
713: }
714: for(j=i+1; j<=nlstate+ndeath;j++){
715: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
716: s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
717: /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
718: }
719: ps[i][j]=s2;
720: }
721: }
722: for(i=1; i<= nlstate; i++){
723: s1=0;
724: for(j=1; j<i; j++)
725: s1+=exp(ps[i][j]);
726: for(j=i+1; j<=nlstate+ndeath; j++)
727: s1+=exp(ps[i][j]);
728: ps[i][i]=1./(s1+1.);
729: for(j=1; j<i; j++)
730: ps[i][j]= exp(ps[i][j])*ps[i][i];
731: for(j=i+1; j<=nlstate+ndeath; j++)
732: ps[i][j]= exp(ps[i][j])*ps[i][i];
733: /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
734: } /* end i */
735:
736: for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
737: for(jj=1; jj<= nlstate+ndeath; jj++){
738: ps[ii][jj]=0;
739: ps[ii][ii]=1;
740: }
741: }
742:
743: /* for(ii=1; ii<= nlstate+ndeath; ii++){
744: for(jj=1; jj<= nlstate+ndeath; jj++){
745: printf("%lf ",ps[ii][jj]);
746: }
747: printf("\n ");
748: }
749: printf("\n ");printf("%lf ",cov[2]);*/
750: /*
751: for(i=1; i<= npar; i++) printf("%f ",x[i]);
752: goto end;*/
753: return ps;
754: }
755:
756: /**************** Product of 2 matrices ******************/
757:
758: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
759: {
760: /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
761: b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
762: /* in, b, out are matrice of pointers which should have been initialized
763: before: only the contents of out is modified. The function returns
764: a pointer to pointers identical to out */
765: long i, j, k;
766: for(i=nrl; i<= nrh; i++)
767: for(k=ncolol; k<=ncoloh; k++)
768: for(j=ncl,out[i][k]=0.; j<=nch; j++)
769: out[i][k] +=in[i][j]*b[j][k];
770:
771: return out;
772: }
773:
774:
775: /************* Higher Matrix Product ***************/
776:
777: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
778: {
779: /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month
780: duration (i.e. until
781: age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.
782: Output is stored in matrix po[i][j][h] for h every 'hstepm' step
783: (typically every 2 years instead of every month which is too big).
784: Model is determined by parameters x and covariates have to be
785: included manually here.
786:
787: */
788:
789: int i, j, d, h, k;
790: double **out, cov[NCOVMAX];
791: double **newm;
792:
793: /* Hstepm could be zero and should return the unit matrix */
794: for (i=1;i<=nlstate+ndeath;i++)
795: for (j=1;j<=nlstate+ndeath;j++){
796: oldm[i][j]=(i==j ? 1.0 : 0.0);
797: po[i][j][0]=(i==j ? 1.0 : 0.0);
798: }
799: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
800: for(h=1; h <=nhstepm; h++){
801: for(d=1; d <=hstepm; d++){
802: newm=savm;
803: /* Covariates have to be included here again */
804: cov[1]=1.;
805: cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
1.7 ! lievre 806: for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
! 807: for (k=1; k<=cptcovage;k++)
! 808: cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
! 809: for (k=1; k<=cptcovprod;k++)
! 810: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
! 811:
! 812:
1.2 lievre 813: /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
814: /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
815: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
816: pmij(pmmij,cov,ncovmodel,x,nlstate));
817: savm=oldm;
818: oldm=newm;
819: }
820: for(i=1; i<=nlstate+ndeath; i++)
821: for(j=1;j<=nlstate+ndeath;j++) {
822: po[i][j][h]=newm[i][j];
823: /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
824: */
825: }
826: } /* end h */
827: return po;
828: }
829:
830:
831: /*************** log-likelihood *************/
832: double func( double *x)
833: {
1.6 lievre 834: int i, ii, j, k, mi, d, kk;
1.2 lievre 835: double l, ll[NLSTATEMAX], cov[NCOVMAX];
836: double **out;
837: double sw; /* Sum of weights */
838: double lli; /* Individual log likelihood */
839: long ipmx;
840: /*extern weight */
841: /* We are differentiating ll according to initial status */
842: /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
843: /*for(i=1;i<imx;i++)
844: printf(" %d\n",s[4][i]);
845: */
1.6 lievre 846: cov[1]=1.;
1.2 lievre 847:
848: for(k=1; k<=nlstate; k++) ll[k]=0.;
849: for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.6 lievre 850: for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
1.2 lievre 851: for(mi=1; mi<= wav[i]-1; mi++){
852: for (ii=1;ii<=nlstate+ndeath;ii++)
853: for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
854: for(d=0; d<dh[mi][i]; d++){
1.6 lievre 855: newm=savm;
856: cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
857: for (kk=1; kk<=cptcovage;kk++) {
858: cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
859: /*printf("%d %d",kk,Tage[kk]);*/
860: }
861: /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/
862: /*cov[3]=pow(cov[2],2)/1000.;*/
863:
1.2 lievre 864: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
865: 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
866: savm=oldm;
867: oldm=newm;
1.3 lievre 868:
869:
1.2 lievre 870: } /* end mult */
871:
872: lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
873: /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
874: ipmx +=1;
875: sw += weight[i];
876: ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
877: } /* end of wave */
878: } /* end of individual */
879:
880: for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
881: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
882: l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
883: return -l;
884: }
885:
886:
887: /*********** Maximum Likelihood Estimation ***************/
888:
889: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
890: {
891: int i,j, iter;
892: double **xi,*delti;
893: double fret;
894: xi=matrix(1,npar,1,npar);
895: for (i=1;i<=npar;i++)
896: for (j=1;j<=npar;j++)
897: xi[i][j]=(i==j ? 1.0 : 0.0);
898: printf("Powell\n");
899: powell(p,xi,npar,ftol,&iter,&fret,func);
900:
901: printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
902: fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));
903:
904: }
905:
906: /**** Computes Hessian and covariance matrix ***/
907: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
908: {
909: double **a,**y,*x,pd;
910: double **hess;
911: int i, j,jk;
912: int *indx;
913:
914: double hessii(double p[], double delta, int theta, double delti[]);
915: double hessij(double p[], double delti[], int i, int j);
916: void lubksb(double **a, int npar, int *indx, double b[]) ;
917: void ludcmp(double **a, int npar, int *indx, double *d) ;
918:
919:
920: hess=matrix(1,npar,1,npar);
921:
922: printf("\nCalculation of the hessian matrix. Wait...\n");
923: for (i=1;i<=npar;i++){
924: printf("%d",i);fflush(stdout);
925: hess[i][i]=hessii(p,ftolhess,i,delti);
926: /*printf(" %f ",p[i]);*/
927: }
928:
929: for (i=1;i<=npar;i++) {
930: for (j=1;j<=npar;j++) {
931: if (j>i) {
932: printf(".%d%d",i,j);fflush(stdout);
933: hess[i][j]=hessij(p,delti,i,j);
934: hess[j][i]=hess[i][j];
935: }
936: }
937: }
938: printf("\n");
939:
940: printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
941:
942: a=matrix(1,npar,1,npar);
943: y=matrix(1,npar,1,npar);
944: x=vector(1,npar);
945: indx=ivector(1,npar);
946: for (i=1;i<=npar;i++)
947: for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
948: ludcmp(a,npar,indx,&pd);
949:
950: for (j=1;j<=npar;j++) {
951: for (i=1;i<=npar;i++) x[i]=0;
952: x[j]=1;
953: lubksb(a,npar,indx,x);
954: for (i=1;i<=npar;i++){
955: matcov[i][j]=x[i];
956: }
957: }
958:
959: printf("\n#Hessian matrix#\n");
960: for (i=1;i<=npar;i++) {
961: for (j=1;j<=npar;j++) {
962: printf("%.3e ",hess[i][j]);
963: }
964: printf("\n");
965: }
966:
967: /* Recompute Inverse */
968: for (i=1;i<=npar;i++)
969: for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
970: ludcmp(a,npar,indx,&pd);
971:
972: /* printf("\n#Hessian matrix recomputed#\n");
973:
974: for (j=1;j<=npar;j++) {
975: for (i=1;i<=npar;i++) x[i]=0;
976: x[j]=1;
977: lubksb(a,npar,indx,x);
978: for (i=1;i<=npar;i++){
979: y[i][j]=x[i];
980: printf("%.3e ",y[i][j]);
981: }
982: printf("\n");
983: }
984: */
985:
986: free_matrix(a,1,npar,1,npar);
987: free_matrix(y,1,npar,1,npar);
988: free_vector(x,1,npar);
989: free_ivector(indx,1,npar);
990: free_matrix(hess,1,npar,1,npar);
991:
992:
993: }
994:
995: /*************** hessian matrix ****************/
996: double hessii( double x[], double delta, int theta, double delti[])
997: {
998: int i;
999: int l=1, lmax=20;
1000: double k1,k2;
1001: double p2[NPARMAX+1];
1002: double res;
1003: double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1004: double fx;
1005: int k=0,kmax=10;
1006: double l1;
1007:
1008: fx=func(x);
1009: for (i=1;i<=npar;i++) p2[i]=x[i];
1010: for(l=0 ; l <=lmax; l++){
1011: l1=pow(10,l);
1012: delts=delt;
1013: for(k=1 ; k <kmax; k=k+1){
1014: delt = delta*(l1*k);
1015: p2[theta]=x[theta] +delt;
1016: k1=func(p2)-fx;
1017: p2[theta]=x[theta]-delt;
1018: k2=func(p2)-fx;
1019: /*res= (k1-2.0*fx+k2)/delt/delt; */
1020: res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
1021:
1022: #ifdef DEBUG
1023: printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
1024: #endif
1025: /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
1026: if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
1027: k=kmax;
1028: }
1029: else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1030: k=kmax; l=lmax*10.;
1031: }
1032: else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
1033: delts=delt;
1034: }
1035: }
1036: }
1037: delti[theta]=delts;
1.3 lievre 1038: return res;
1039:
1.2 lievre 1040: }
1041:
1042: double hessij( double x[], double delti[], int thetai,int thetaj)
1043: {
1044: int i;
1045: int l=1, l1, lmax=20;
1046: double k1,k2,k3,k4,res,fx;
1047: double p2[NPARMAX+1];
1048: int k;
1049:
1050: fx=func(x);
1051: for (k=1; k<=2; k++) {
1052: for (i=1;i<=npar;i++) p2[i]=x[i];
1053: p2[thetai]=x[thetai]+delti[thetai]/k;
1054: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1055: k1=func(p2)-fx;
1056:
1057: p2[thetai]=x[thetai]+delti[thetai]/k;
1058: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1059: k2=func(p2)-fx;
1060:
1061: p2[thetai]=x[thetai]-delti[thetai]/k;
1062: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1063: k3=func(p2)-fx;
1064:
1065: p2[thetai]=x[thetai]-delti[thetai]/k;
1066: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1067: k4=func(p2)-fx;
1068: res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
1069: #ifdef DEBUG
1070: printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
1071: #endif
1072: }
1073: return res;
1074: }
1075:
1076: /************** Inverse of matrix **************/
1077: void ludcmp(double **a, int n, int *indx, double *d)
1078: {
1079: int i,imax,j,k;
1080: double big,dum,sum,temp;
1081: double *vv;
1082:
1083: vv=vector(1,n);
1084: *d=1.0;
1085: for (i=1;i<=n;i++) {
1086: big=0.0;
1087: for (j=1;j<=n;j++)
1088: if ((temp=fabs(a[i][j])) > big) big=temp;
1089: if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
1090: vv[i]=1.0/big;
1091: }
1092: for (j=1;j<=n;j++) {
1093: for (i=1;i<j;i++) {
1094: sum=a[i][j];
1095: for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
1096: a[i][j]=sum;
1097: }
1098: big=0.0;
1099: for (i=j;i<=n;i++) {
1100: sum=a[i][j];
1101: for (k=1;k<j;k++)
1102: sum -= a[i][k]*a[k][j];
1103: a[i][j]=sum;
1104: if ( (dum=vv[i]*fabs(sum)) >= big) {
1105: big=dum;
1106: imax=i;
1107: }
1108: }
1109: if (j != imax) {
1110: for (k=1;k<=n;k++) {
1111: dum=a[imax][k];
1112: a[imax][k]=a[j][k];
1113: a[j][k]=dum;
1114: }
1115: *d = -(*d);
1116: vv[imax]=vv[j];
1117: }
1118: indx[j]=imax;
1119: if (a[j][j] == 0.0) a[j][j]=TINY;
1120: if (j != n) {
1121: dum=1.0/(a[j][j]);
1122: for (i=j+1;i<=n;i++) a[i][j] *= dum;
1123: }
1124: }
1125: free_vector(vv,1,n); /* Doesn't work */
1126: ;
1127: }
1128:
1129: void lubksb(double **a, int n, int *indx, double b[])
1130: {
1131: int i,ii=0,ip,j;
1132: double sum;
1133:
1134: for (i=1;i<=n;i++) {
1135: ip=indx[i];
1136: sum=b[ip];
1137: b[ip]=b[i];
1138: if (ii)
1139: for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
1140: else if (sum) ii=i;
1141: b[i]=sum;
1142: }
1143: for (i=n;i>=1;i--) {
1144: sum=b[i];
1145: for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
1146: b[i]=sum/a[i][i];
1147: }
1148: }
1149:
1150: /************ Frequencies ********************/
1151: void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)
1152: { /* Some frequencies */
1153:
1154: int i, m, jk, k1, i1, j1, bool, z1,z2,j;
1155: double ***freq; /* Frequencies */
1156: double *pp;
1157: double pos;
1158: FILE *ficresp;
1159: char fileresp[FILENAMELENGTH];
1160:
1161: pp=vector(1,nlstate);
1162:
1163: strcpy(fileresp,"p");
1164: strcat(fileresp,fileres);
1165: if((ficresp=fopen(fileresp,"w"))==NULL) {
1166: printf("Problem with prevalence resultfile: %s\n", fileresp);
1167: exit(0);
1168: }
1169: freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
1170: j1=0;
1171:
1.7 ! lievre 1172: j=cptcoveff;
1.2 lievre 1173: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1174:
1175: for(k1=1; k1<=j;k1++){
1176: for(i1=1; i1<=ncodemax[k1];i1++){
1177: j1++;
1178:
1179: for (i=-1; i<=nlstate+ndeath; i++)
1180: for (jk=-1; jk<=nlstate+ndeath; jk++)
1181: for(m=agemin; m <= agemax+3; m++)
1182: freq[i][jk][m]=0;
1183:
1184: for (i=1; i<=imx; i++) {
1185: bool=1;
1186: if (cptcovn>0) {
1.7 ! lievre 1187: for (z1=1; z1<=cptcoveff; z1++)
! 1188: if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) bool=0;
1.2 lievre 1189: }
1190: if (bool==1) {
1191: for(m=firstpass; m<=lastpass-1; m++){
1192: if(agev[m][i]==0) agev[m][i]=agemax+1;
1193: if(agev[m][i]==1) agev[m][i]=agemax+2;
1194: freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1195: freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
1196: }
1197: }
1198: }
1199: if (cptcovn>0) {
1.7 ! lievre 1200: fprintf(ficresp, "\n#********** Variable ");
! 1201: for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.2 lievre 1202: }
1.7 ! lievre 1203: fprintf(ficresp, "**********\n#");
1.2 lievre 1204: for(i=1; i<=nlstate;i++)
1205: fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
1206: fprintf(ficresp, "\n");
1207:
1208: for(i=(int)agemin; i <= (int)agemax+3; i++){
1209: if(i==(int)agemax+3)
1210: printf("Total");
1211: else
1212: printf("Age %d", i);
1213: for(jk=1; jk <=nlstate ; jk++){
1214: for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
1215: pp[jk] += freq[jk][m][i];
1216: }
1217: for(jk=1; jk <=nlstate ; jk++){
1218: for(m=-1, pos=0; m <=0 ; m++)
1219: pos += freq[jk][m][i];
1220: if(pp[jk]>=1.e-10)
1221: printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
1222: else
1223: printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
1224: }
1225: for(jk=1; jk <=nlstate ; jk++){
1226: for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)
1227: pp[jk] += freq[jk][m][i];
1228: }
1229: for(jk=1,pos=0; jk <=nlstate ; jk++)
1230: pos += pp[jk];
1231: for(jk=1; jk <=nlstate ; jk++){
1232: if(pos>=1.e-5)
1233: printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
1234: else
1235: printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
1236: if( i <= (int) agemax){
1237: if(pos>=1.e-5)
1238: fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
1239: else
1240: fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
1241: }
1242: }
1243: for(jk=-1; jk <=nlstate+ndeath; jk++)
1244: for(m=-1; m <=nlstate+ndeath; m++)
1245: if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
1246: if(i <= (int) agemax)
1247: fprintf(ficresp,"\n");
1248: printf("\n");
1249: }
1250: }
1251: }
1252:
1253: fclose(ficresp);
1254: free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
1255: free_vector(pp,1,nlstate);
1256:
1257: } /* End of Freq */
1258:
1259: /************* Waves Concatenation ***************/
1260:
1261: void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm)
1262: {
1263: /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
1264: Death is a valid wave (if date is known).
1265: mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
1266: dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
1267: and mw[mi+1][i]. dh depends on stepm.
1268: */
1269:
1270: int i, mi, m;
1271: int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
1272: float sum=0.;
1273:
1274: for(i=1; i<=imx; i++){
1275: mi=0;
1276: m=firstpass;
1277: while(s[m][i] <= nlstate){
1278: if(s[m][i]>=1)
1279: mw[++mi][i]=m;
1280: if(m >=lastpass)
1281: break;
1282: else
1283: m++;
1284: }/* end while */
1285: if (s[m][i] > nlstate){
1286: mi++; /* Death is another wave */
1287: /* if(mi==0) never been interviewed correctly before death */
1288: /* Only death is a correct wave */
1289: mw[mi][i]=m;
1290: }
1291:
1292: wav[i]=mi;
1293: if(mi==0)
1294: printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
1295: }
1296:
1297: for(i=1; i<=imx; i++){
1298: for(mi=1; mi<wav[i];mi++){
1299: if (stepm <=0)
1300: dh[mi][i]=1;
1301: else{
1302: if (s[mw[mi+1][i]][i] > nlstate) {
1303: j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
1304: if(j=0) j=1; /* Survives at least one month after exam */
1305: }
1306: else{
1307: j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1308: k=k+1;
1309: if (j >= jmax) jmax=j;
1310: else if (j <= jmin)jmin=j;
1311: sum=sum+j;
1312: }
1313: jk= j/stepm;
1314: jl= j -jk*stepm;
1315: ju= j -(jk+1)*stepm;
1316: if(jl <= -ju)
1317: dh[mi][i]=jk;
1318: else
1319: dh[mi][i]=jk+1;
1320: if(dh[mi][i]==0)
1321: dh[mi][i]=1; /* At least one step */
1322: }
1323: }
1324: }
1325: printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);
1326: }
1327: /*********** Tricode ****************************/
1328: void tricode(int *Tvar, int **nbcode, int imx)
1329: {
1.7 ! lievre 1330: int Ndum[20],ij=1, k, j, i;
1.2 lievre 1331: int cptcode=0;
1.7 ! lievre 1332: cptcoveff=0;
! 1333:
! 1334: for (k=0; k<19; k++) Ndum[k]=0;
1.2 lievre 1335: for (k=1; k<=7; k++) ncodemax[k]=0;
1.6 lievre 1336:
1.7 ! lievre 1337: for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.2 lievre 1338: for (i=1; i<=imx; i++) {
1339: ij=(int)(covar[Tvar[j]][i]);
1340: Ndum[ij]++;
1341: if (ij > cptcode) cptcode=ij;
1342: }
1.7 ! lievre 1343:
1.2 lievre 1344: /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/
1345: for (i=0; i<=cptcode; i++) {
1346: if(Ndum[i]!=0) ncodemax[j]++;
1347: }
1348: ij=1;
1.7 ! lievre 1349:
1.2 lievre 1350: for (i=1; i<=ncodemax[j]; i++) {
1.7 ! lievre 1351: for (k=0; k<=19; k++) {
1.2 lievre 1352: if (Ndum[k] != 0) {
1353: nbcode[Tvar[j]][ij]=k;
1.7 ! lievre 1354: /* printf("ij=%d ",nbcode[Tvar[2]][1]);*/
1.2 lievre 1355: ij++;
1356: }
1357: if (ij > ncodemax[j]) break;
1358: }
1359: }
1.7 ! lievre 1360: }
! 1361: for (i=1; i<=10; i++) {
! 1362: ij=Tvar[i];
! 1363: Ndum[ij]++;
! 1364: }
! 1365: ij=1;
! 1366: for (i=1; i<=cptcovn; i++) {
! 1367: if((Ndum[i]!=0) && (i<=ncov)){
! 1368: Tvaraff[i]=ij;
! 1369: ij++;
! 1370: }
! 1371: }
! 1372:
! 1373: for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
! 1374: if ((Tvar[j]>= cptcoveff) && (Tvar[j] <=ncov)) cptcoveff=Tvar[j];
! 1375: /*printf("j=%d %d\n",j,Tvar[j]);*/
! 1376: }
! 1377:
! 1378: /* printf("cptcoveff=%d Tvaraff=%d %d\n",cptcoveff, Tvaraff[1],Tvaraff[2]);
! 1379: scanf("%d",i);*/
1.6 lievre 1380: }
1.2 lievre 1381:
1382: /*********** Health Expectancies ****************/
1383:
1384: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)
1385: {
1386: /* Health expectancies */
1387: int i, j, nhstepm, hstepm, h;
1388: double age, agelim,hf;
1389: double ***p3mat;
1390:
1391: fprintf(ficreseij,"# Health expectancies\n");
1392: fprintf(ficreseij,"# Age");
1393: for(i=1; i<=nlstate;i++)
1394: for(j=1; j<=nlstate;j++)
1395: fprintf(ficreseij," %1d-%1d",i,j);
1396: fprintf(ficreseij,"\n");
1397:
1398: hstepm=1*YEARM; /* Every j years of age (in month) */
1399: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1400:
1401: agelim=AGESUP;
1402: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1403: /* nhstepm age range expressed in number of stepm */
1404: nhstepm=(int) rint((agelim-age)*YEARM/stepm);
1405: /* Typically if 20 years = 20*12/6=40 stepm */
1406: if (stepm >= YEARM) hstepm=1;
1407: nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */
1408: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1409: /* Computed by stepm unit matrices, product of hstepm matrices, stored
1410: in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
1411: hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
1412:
1413:
1414: for(i=1; i<=nlstate;i++)
1415: for(j=1; j<=nlstate;j++)
1416: for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){
1417: eij[i][j][(int)age] +=p3mat[i][j][h];
1418: }
1419:
1420: hf=1;
1421: if (stepm >= YEARM) hf=stepm/YEARM;
1422: fprintf(ficreseij,"%.0f",age );
1423: for(i=1; i<=nlstate;i++)
1424: for(j=1; j<=nlstate;j++){
1425: fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);
1426: }
1427: fprintf(ficreseij,"\n");
1428: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1429: }
1430: }
1431:
1432: /************ Variance ******************/
1433: void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
1434: {
1435: /* Variance of health expectancies */
1436: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1437: double **newm;
1438: double **dnewm,**doldm;
1439: int i, j, nhstepm, hstepm, h;
1440: int k, cptcode;
1441: double *xp;
1442: double **gp, **gm;
1443: double ***gradg, ***trgradg;
1444: double ***p3mat;
1445: double age,agelim;
1446: int theta;
1447:
1448: fprintf(ficresvij,"# Covariances of life expectancies\n");
1449: fprintf(ficresvij,"# Age");
1450: for(i=1; i<=nlstate;i++)
1451: for(j=1; j<=nlstate;j++)
1452: fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
1453: fprintf(ficresvij,"\n");
1454:
1455: xp=vector(1,npar);
1456: dnewm=matrix(1,nlstate,1,npar);
1457: doldm=matrix(1,nlstate,1,nlstate);
1458:
1459: hstepm=1*YEARM; /* Every year of age */
1460: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1461: agelim = AGESUP;
1462: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1463: nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1464: if (stepm >= YEARM) hstepm=1;
1465: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1466: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1467: gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
1468: gp=matrix(0,nhstepm,1,nlstate);
1469: gm=matrix(0,nhstepm,1,nlstate);
1470:
1471: for(theta=1; theta <=npar; theta++){
1472: for(i=1; i<=npar; i++){ /* Computes gradient */
1473: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1474: }
1475: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1476: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1477: for(j=1; j<= nlstate; j++){
1478: for(h=0; h<=nhstepm; h++){
1479: for(i=1, gp[h][j]=0.;i<=nlstate;i++)
1480: gp[h][j] += prlim[i][i]*p3mat[i][j][h];
1481: }
1482: }
1483:
1484: for(i=1; i<=npar; i++) /* Computes gradient */
1485: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1486: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1487: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1488: for(j=1; j<= nlstate; j++){
1489: for(h=0; h<=nhstepm; h++){
1490: for(i=1, gm[h][j]=0.;i<=nlstate;i++)
1491: gm[h][j] += prlim[i][i]*p3mat[i][j][h];
1492: }
1493: }
1494: for(j=1; j<= nlstate; j++)
1495: for(h=0; h<=nhstepm; h++){
1496: gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
1497: }
1498: } /* End theta */
1499:
1500: trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
1501:
1502: for(h=0; h<=nhstepm; h++)
1503: for(j=1; j<=nlstate;j++)
1504: for(theta=1; theta <=npar; theta++)
1505: trgradg[h][j][theta]=gradg[h][theta][j];
1506:
1507: for(i=1;i<=nlstate;i++)
1508: for(j=1;j<=nlstate;j++)
1509: vareij[i][j][(int)age] =0.;
1510: for(h=0;h<=nhstepm;h++){
1511: for(k=0;k<=nhstepm;k++){
1512: matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
1513: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
1514: for(i=1;i<=nlstate;i++)
1515: for(j=1;j<=nlstate;j++)
1516: vareij[i][j][(int)age] += doldm[i][j];
1517: }
1518: }
1519: h=1;
1520: if (stepm >= YEARM) h=stepm/YEARM;
1521: fprintf(ficresvij,"%.0f ",age );
1522: for(i=1; i<=nlstate;i++)
1523: for(j=1; j<=nlstate;j++){
1524: fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);
1525: }
1526: fprintf(ficresvij,"\n");
1527: free_matrix(gp,0,nhstepm,1,nlstate);
1528: free_matrix(gm,0,nhstepm,1,nlstate);
1529: free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
1530: free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
1531: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1532: } /* End age */
1533:
1534: free_vector(xp,1,npar);
1535: free_matrix(doldm,1,nlstate,1,npar);
1536: free_matrix(dnewm,1,nlstate,1,nlstate);
1537:
1538: }
1539:
1540: /************ Variance of prevlim ******************/
1541: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
1542: {
1543: /* Variance of prevalence limit */
1544: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1545: double **newm;
1546: double **dnewm,**doldm;
1547: int i, j, nhstepm, hstepm;
1548: int k, cptcode;
1549: double *xp;
1550: double *gp, *gm;
1551: double **gradg, **trgradg;
1552: double age,agelim;
1553: int theta;
1554:
1555: fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
1556: fprintf(ficresvpl,"# Age");
1557: for(i=1; i<=nlstate;i++)
1558: fprintf(ficresvpl," %1d-%1d",i,i);
1559: fprintf(ficresvpl,"\n");
1560:
1561: xp=vector(1,npar);
1562: dnewm=matrix(1,nlstate,1,npar);
1563: doldm=matrix(1,nlstate,1,nlstate);
1564:
1565: hstepm=1*YEARM; /* Every year of age */
1566: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1567: agelim = AGESUP;
1568: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1569: nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1570: if (stepm >= YEARM) hstepm=1;
1571: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1572: gradg=matrix(1,npar,1,nlstate);
1573: gp=vector(1,nlstate);
1574: gm=vector(1,nlstate);
1575:
1576: for(theta=1; theta <=npar; theta++){
1577: for(i=1; i<=npar; i++){ /* Computes gradient */
1578: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1579: }
1580: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1581: for(i=1;i<=nlstate;i++)
1582: gp[i] = prlim[i][i];
1583:
1584: for(i=1; i<=npar; i++) /* Computes gradient */
1585: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1586: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1587: for(i=1;i<=nlstate;i++)
1588: gm[i] = prlim[i][i];
1589:
1590: for(i=1;i<=nlstate;i++)
1591: gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1592: } /* End theta */
1593:
1594: trgradg =matrix(1,nlstate,1,npar);
1595:
1596: for(j=1; j<=nlstate;j++)
1597: for(theta=1; theta <=npar; theta++)
1598: trgradg[j][theta]=gradg[theta][j];
1599:
1600: for(i=1;i<=nlstate;i++)
1601: varpl[i][(int)age] =0.;
1602: matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
1603: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
1604: for(i=1;i<=nlstate;i++)
1605: varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
1606:
1607: fprintf(ficresvpl,"%.0f ",age );
1608: for(i=1; i<=nlstate;i++)
1609: fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1610: fprintf(ficresvpl,"\n");
1611: free_vector(gp,1,nlstate);
1612: free_vector(gm,1,nlstate);
1613: free_matrix(gradg,1,npar,1,nlstate);
1614: free_matrix(trgradg,1,nlstate,1,npar);
1615: } /* End age */
1616:
1617: free_vector(xp,1,npar);
1618: free_matrix(doldm,1,nlstate,1,npar);
1619: free_matrix(dnewm,1,nlstate,1,nlstate);
1620:
1621: }
1622:
1623:
1624:
1625: /***********************************************/
1626: /**************** Main Program *****************/
1627: /***********************************************/
1628:
1629: /*int main(int argc, char *argv[])*/
1630: int main()
1631: {
1632:
1633: int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;
1634: double agedeb, agefin,hf;
1635: double agemin=1.e20, agemax=-1.e20;
1636:
1637: double fret;
1638: double **xi,tmp,delta;
1639:
1640: double dum; /* Dummy variable */
1641: double ***p3mat;
1642: int *indx;
1643: char line[MAXLINE], linepar[MAXLINE];
1644: char title[MAXLINE];
1645: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH];
1646: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];
1647: char filerest[FILENAMELENGTH];
1648: char fileregp[FILENAMELENGTH];
1649: char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
1650: int firstobs=1, lastobs=10;
1651: int sdeb, sfin; /* Status at beginning and end */
1652: int c, h , cpt,l;
1653: int ju,jl, mi;
1.7 ! lievre 1654: int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.2 lievre 1655: int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
1656:
1657: int hstepm, nhstepm;
1658: double bage, fage, age, agelim, agebase;
1659: double ftolpl=FTOL;
1660: double **prlim;
1661: double *severity;
1662: double ***param; /* Matrix of parameters */
1663: double *p;
1664: double **matcov; /* Matrix of covariance */
1665: double ***delti3; /* Scale */
1666: double *delti; /* Scale */
1667: double ***eij, ***vareij;
1668: double **varpl; /* Variances of prevalence limits by age */
1669: double *epj, vepp;
1.5 lievre 1670: char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";
1.2 lievre 1671: char *alph[]={"a","a","b","c","d","e"}, str[4];
1.5 lievre 1672:
1.2 lievre 1673: char z[1]="c", occ;
1674: #include <sys/time.h>
1675: #include <time.h>
1676: char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1677: /* long total_usecs;
1678: struct timeval start_time, end_time;
1679:
1680: gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1681:
1682:
1.4 lievre 1683: printf("\nIMACH, Version 0.64a");
1.2 lievre 1684: printf("\nEnter the parameter file name: ");
1685:
1686: #ifdef windows
1687: scanf("%s",pathtot);
1.5 lievre 1688: getcwd(pathcd, size);
1689: /*cygwin_split_path(pathtot,path,optionfile);
1690: printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
1691: /* cutv(path,optionfile,pathtot,'\\');*/
1692:
1693: split(pathtot, path,optionfile);
1.2 lievre 1694: chdir(path);
1695: replace(pathc,path);
1696: #endif
1697: #ifdef unix
1698: scanf("%s",optionfile);
1699: #endif
1700:
1701: /*-------- arguments in the command line --------*/
1702:
1703: strcpy(fileres,"r");
1704: strcat(fileres, optionfile);
1705:
1706: /*---------arguments file --------*/
1707:
1708: if((ficpar=fopen(optionfile,"r"))==NULL) {
1709: printf("Problem with optionfile %s\n",optionfile);
1710: goto end;
1711: }
1712:
1713: strcpy(filereso,"o");
1714: strcat(filereso,fileres);
1715: if((ficparo=fopen(filereso,"w"))==NULL) {
1716: printf("Problem with Output resultfile: %s\n", filereso);goto end;
1717: }
1718:
1719: /* Reads comments: lines beginning with '#' */
1720: while((c=getc(ficpar))=='#' && c!= EOF){
1721: ungetc(c,ficpar);
1722: fgets(line, MAXLINE, ficpar);
1723: puts(line);
1724: fputs(line,ficparo);
1725: }
1726: ungetc(c,ficpar);
1727:
1728: fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
1729: printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);
1730: fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);
1731:
1.6 lievre 1732: covar=matrix(0,NCOVMAX,1,n);
1.2 lievre 1733: if (strlen(model)<=1) cptcovn=0;
1734: else {
1735: j=0;
1736: j=nbocc(model,'+');
1737: cptcovn=j+1;
1738: }
1739:
1740: ncovmodel=2+cptcovn;
1741: nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1742:
1743: /* Read guess parameters */
1744: /* Reads comments: lines beginning with '#' */
1745: while((c=getc(ficpar))=='#' && c!= EOF){
1746: ungetc(c,ficpar);
1747: fgets(line, MAXLINE, ficpar);
1748: puts(line);
1749: fputs(line,ficparo);
1750: }
1751: ungetc(c,ficpar);
1752:
1753: param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1754: for(i=1; i <=nlstate; i++)
1755: for(j=1; j <=nlstate+ndeath-1; j++){
1756: fscanf(ficpar,"%1d%1d",&i1,&j1);
1757: fprintf(ficparo,"%1d%1d",i1,j1);
1758: printf("%1d%1d",i,j);
1759: for(k=1; k<=ncovmodel;k++){
1760: fscanf(ficpar," %lf",¶m[i][j][k]);
1761: printf(" %lf",param[i][j][k]);
1762: fprintf(ficparo," %lf",param[i][j][k]);
1763: }
1764: fscanf(ficpar,"\n");
1765: printf("\n");
1766: fprintf(ficparo,"\n");
1767: }
1768:
1769: npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
1770: p=param[1][1];
1771:
1772: /* Reads comments: lines beginning with '#' */
1773: while((c=getc(ficpar))=='#' && c!= EOF){
1774: ungetc(c,ficpar);
1775: fgets(line, MAXLINE, ficpar);
1776: puts(line);
1777: fputs(line,ficparo);
1778: }
1779: ungetc(c,ficpar);
1780:
1781: delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1782: delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
1783: for(i=1; i <=nlstate; i++){
1784: for(j=1; j <=nlstate+ndeath-1; j++){
1785: fscanf(ficpar,"%1d%1d",&i1,&j1);
1786: printf("%1d%1d",i,j);
1787: fprintf(ficparo,"%1d%1d",i1,j1);
1788: for(k=1; k<=ncovmodel;k++){
1789: fscanf(ficpar,"%le",&delti3[i][j][k]);
1790: printf(" %le",delti3[i][j][k]);
1791: fprintf(ficparo," %le",delti3[i][j][k]);
1792: }
1793: fscanf(ficpar,"\n");
1794: printf("\n");
1795: fprintf(ficparo,"\n");
1796: }
1797: }
1798: delti=delti3[1][1];
1799:
1800: /* Reads comments: lines beginning with '#' */
1801: while((c=getc(ficpar))=='#' && c!= EOF){
1802: ungetc(c,ficpar);
1803: fgets(line, MAXLINE, ficpar);
1804: puts(line);
1805: fputs(line,ficparo);
1806: }
1807: ungetc(c,ficpar);
1808:
1809: matcov=matrix(1,npar,1,npar);
1810: for(i=1; i <=npar; i++){
1811: fscanf(ficpar,"%s",&str);
1812: printf("%s",str);
1813: fprintf(ficparo,"%s",str);
1814: for(j=1; j <=i; j++){
1815: fscanf(ficpar," %le",&matcov[i][j]);
1816: printf(" %.5le",matcov[i][j]);
1817: fprintf(ficparo," %.5le",matcov[i][j]);
1818: }
1819: fscanf(ficpar,"\n");
1820: printf("\n");
1821: fprintf(ficparo,"\n");
1822: }
1823: for(i=1; i <=npar; i++)
1824: for(j=i+1;j<=npar;j++)
1825: matcov[i][j]=matcov[j][i];
1826:
1827: printf("\n");
1828:
1829:
1830: /*-------- data file ----------*/
1831: if((ficres =fopen(fileres,"w"))==NULL) {
1832: printf("Problem with resultfile: %s\n", fileres);goto end;
1833: }
1834: fprintf(ficres,"#%s\n",version);
1835:
1836: if((fic=fopen(datafile,"r"))==NULL) {
1837: printf("Problem with datafile: %s\n", datafile);goto end;
1838: }
1839:
1840: n= lastobs;
1841: severity = vector(1,maxwav);
1842: outcome=imatrix(1,maxwav+1,1,n);
1843: num=ivector(1,n);
1844: moisnais=vector(1,n);
1845: annais=vector(1,n);
1846: moisdc=vector(1,n);
1847: andc=vector(1,n);
1848: agedc=vector(1,n);
1849: cod=ivector(1,n);
1850: weight=vector(1,n);
1851: for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
1852: mint=matrix(1,maxwav,1,n);
1853: anint=matrix(1,maxwav,1,n);
1854: s=imatrix(1,maxwav+1,1,n);
1855: adl=imatrix(1,maxwav+1,1,n);
1856: tab=ivector(1,NCOVMAX);
1.3 lievre 1857: ncodemax=ivector(1,8);
1.2 lievre 1858:
1859: i=1;
1860: while (fgets(line, MAXLINE, fic) != NULL) {
1861: if ((i >= firstobs) && (i <=lastobs)) {
1862:
1863: for (j=maxwav;j>=1;j--){
1864: cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
1865: strcpy(line,stra);
1866: cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
1867: cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
1868: }
1869:
1870: cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
1871: cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
1872:
1873: cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
1874: cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
1875:
1876: cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
1877: for (j=ncov;j>=1;j--){
1878: cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
1879: }
1880: num[i]=atol(stra);
1881:
1.5 lievre 1882: /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));*/
1.2 lievre 1883:
1884: i=i+1;
1885: }
1886: }
1.3 lievre 1887:
1.2 lievre 1888: /*scanf("%d",i);*/
1.3 lievre 1889: imx=i-1; /* Number of individuals */
1.2 lievre 1890:
1891: /* Calculation of the number of parameter from char model*/
1.7 ! lievre 1892: Tvar=ivector(1,15);
! 1893: Tprod=ivector(1,15);
! 1894: Tvaraff=ivector(1,15);
! 1895: Tvard=imatrix(1,15,1,2);
1.6 lievre 1896: Tage=ivector(1,15);
1.2 lievre 1897:
1898: if (strlen(model) >1){
1.7 ! lievre 1899: j=0, j1=0, k1=1, k2=1;
1.2 lievre 1900: j=nbocc(model,'+');
1.6 lievre 1901: j1=nbocc(model,'*');
1.2 lievre 1902: cptcovn=j+1;
1.7 ! lievre 1903: cptcovprod=j1;
1.3 lievre 1904:
1.2 lievre 1905: strcpy(modelsav,model);
1.7 ! lievre 1906: if (j==0) {
1.6 lievre 1907: if (j1==0){
1.7 ! lievre 1908: cutv(stra,strb,modelsav,'V');
! 1909: Tvar[1]=atoi(strb);
1.6 lievre 1910: }
1911: else if (j1==1) {
1.7 ! lievre 1912: cutv(stra,strb,modelsav,'*');
! 1913: Tage[1]=1; cptcovage++;
! 1914: if (strcmp(stra,"age")==0) {
! 1915: cptcovprod--;
! 1916: cutv(strd,strc,strb,'V');
! 1917: Tvar[1]=atoi(strc);
! 1918: }
! 1919: else if (strcmp(strb,"age")==0) {
! 1920: cptcovprod--;
! 1921: cutv(strd,strc,stra,'V');
! 1922: Tvar[1]=atoi(strc);
! 1923: }
! 1924: else {
! 1925: cutv(strd,strc,strb,'V');
! 1926: cutv(stre,strd,stra,'V');
! 1927: Tvar[1]=ncov+1;
! 1928: for (k=1; k<=lastobs;k++)
! 1929: covar[ncov+1][k]=covar[atoi(strc)][k]*covar[atoi(strd)][k];
! 1930: }
! 1931: /*printf("%s %s %s\n", stra,strb,modelsav);
! 1932: printf("%d ",Tvar[1]);
! 1933: scanf("%d",i);*/
1.6 lievre 1934: }
1.2 lievre 1935: }
1.7 ! lievre 1936: else {
1.2 lievre 1937: for(i=j; i>=1;i--){
1938: cutv(stra,strb,modelsav,'+');
1.7 ! lievre 1939: /*printf("%s %s %s\n", stra,strb,modelsav);
! 1940: scanf("%d",i);*/
1.2 lievre 1941: if (strchr(strb,'*')) {
1942: cutv(strd,strc,strb,'*');
1.6 lievre 1943: if (strcmp(strc,"age")==0) {
1.7 ! lievre 1944: cptcovprod--;
1.6 lievre 1945: cutv(strb,stre,strd,'V');
1946: Tvar[i+1]=atoi(stre);
1947: cptcovage++;
1948: Tage[cptcovage]=i+1;
1949: printf("stre=%s ", stre);
1950: }
1951: else if (strcmp(strd,"age")==0) {
1.7 ! lievre 1952: cptcovprod--;
1.6 lievre 1953: cutv(strb,stre,strc,'V');
1954: Tvar[i+1]=atoi(stre);
1955: cptcovage++;
1956: Tage[cptcovage]=i+1;
1957: }
1958: else {
1959: cutv(strb,stre,strc,'V');
1.7 ! lievre 1960: Tvar[i+1]=ncov+k1;
1.6 lievre 1961: cutv(strb,strc,strd,'V');
1.7 ! lievre 1962: Tprod[k1]=i+1;
! 1963: Tvard[k1][1]=atoi(strc);
! 1964: Tvard[k1][2]=atoi(stre);
! 1965: Tvar[cptcovn+k2]=Tvard[k1][1];
! 1966: Tvar[cptcovn+k2+1]=Tvard[k1][2];
1.6 lievre 1967: for (k=1; k<=lastobs;k++)
1.7 ! lievre 1968: covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
! 1969: k1++;
! 1970: k2=k2+2;
1.6 lievre 1971: }
1.2 lievre 1972: }
1.6 lievre 1973: else {
1974: cutv(strd,strc,strb,'V');
1975: /* printf("%s %s %s", strd,strc,strb);*/
1.7 ! lievre 1976: Tvar[i+1]=atoi(strc);
1.2 lievre 1977: }
1.3 lievre 1978: strcpy(modelsav,stra);
1.2 lievre 1979: }
1.3 lievre 1980: cutv(strd,strc,stra,'V');
1.2 lievre 1981: Tvar[1]=atoi(strc);
1982: }
1983: }
1.7 ! lievre 1984: /* for (i=1; i<=5; i++)
! 1985: printf("i=%d %d ",i,Tvar[i]);*/
! 1986: /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);*/
! 1987: /*printf("cptcovprod=%d ", cptcovprod);*/
! 1988: /* scanf("%d ",i);*/
1.2 lievre 1989: fclose(fic);
1990:
1.7 ! lievre 1991: /* if(mle==1){*/
1.2 lievre 1992: if (weightopt != 1) { /* Maximisation without weights*/
1993: for(i=1;i<=n;i++) weight[i]=1.0;
1994: }
1995: /*-calculation of age at interview from date of interview and age at death -*/
1996: agev=matrix(1,maxwav,1,imx);
1997:
1998: for (i=1; i<=imx; i++) {
1999: agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
2000: for(m=1; (m<= maxwav); m++){
2001: if(s[m][i] >0){
2002: if (s[m][i] == nlstate+1) {
2003: if(agedc[i]>0)
2004: if(moisdc[i]!=99 && andc[i]!=9999)
2005: agev[m][i]=agedc[i];
2006: else{
2007: printf("Warning negative age at death: %d line:%d\n",num[i],i);
2008: agev[m][i]=-1;
2009: }
2010: }
2011: else if(s[m][i] !=9){ /* Should no more exist */
2012: agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.3 lievre 2013: if(mint[m][i]==99 || anint[m][i]==9999)
1.2 lievre 2014: agev[m][i]=1;
2015: else if(agev[m][i] <agemin){
2016: agemin=agev[m][i];
2017: /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
2018: }
2019: else if(agev[m][i] >agemax){
2020: agemax=agev[m][i];
2021: /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
2022: }
2023: /*agev[m][i]=anint[m][i]-annais[i];*/
2024: /* agev[m][i] = age[i]+2*m;*/
2025: }
2026: else { /* =9 */
2027: agev[m][i]=1;
2028: s[m][i]=-1;
2029: }
2030: }
2031: else /*= 0 Unknown */
2032: agev[m][i]=1;
2033: }
2034:
2035: }
2036: for (i=1; i<=imx; i++) {
2037: for(m=1; (m<= maxwav); m++){
2038: if (s[m][i] > (nlstate+ndeath)) {
2039: printf("Error: Wrong value in nlstate or ndeath\n");
2040: goto end;
2041: }
2042: }
2043: }
2044:
2045: printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
2046:
2047: free_vector(severity,1,maxwav);
2048: free_imatrix(outcome,1,maxwav+1,1,n);
2049: free_vector(moisnais,1,n);
2050: free_vector(annais,1,n);
2051: free_matrix(mint,1,maxwav,1,n);
2052: free_matrix(anint,1,maxwav,1,n);
2053: free_vector(moisdc,1,n);
2054: free_vector(andc,1,n);
2055:
2056:
2057: wav=ivector(1,imx);
2058: dh=imatrix(1,lastpass-firstpass+1,1,imx);
2059: mw=imatrix(1,lastpass-firstpass+1,1,imx);
2060:
2061: /* Concatenates waves */
2062: concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
2063:
2064:
1.6 lievre 2065: Tcode=ivector(1,100);
1.7 ! lievre 2066: nbcode=imatrix(1,nvar,1,8);
! 2067: ncodemax[1]=1;
! 2068: if (cptcovn > 0) tricode(Tvar,nbcode,imx);
! 2069:
1.2 lievre 2070: codtab=imatrix(1,100,1,10);
2071: h=0;
1.7 ! lievre 2072: m=pow(2,cptcoveff);
1.2 lievre 2073:
1.7 ! lievre 2074: for(k=1;k<=cptcoveff; k++){
1.2 lievre 2075: for(i=1; i <=(m/pow(2,k));i++){
2076: for(j=1; j <= ncodemax[k]; j++){
1.7 ! lievre 2077: for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
1.2 lievre 2078: h++;
2079: if (h>m) h=1;codtab[h][k]=j;
2080: }
2081: }
2082: }
2083: }
2084:
1.7 ! lievre 2085:
! 2086: /*for(i=1; i <=m ;i++){
1.2 lievre 2087: for(k=1; k <=cptcovn; k++){
1.7 ! lievre 2088: printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);
1.2 lievre 2089: }
2090: printf("\n");
1.6 lievre 2091: }
2092: scanf("%d",i);*/
1.2 lievre 2093:
2094: /* Calculates basic frequencies. Computes observed prevalence at single age
2095: and prints on file fileres'p'. */
1.7 ! lievre 2096: freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);
1.2 lievre 2097:
2098: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2099: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2100: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2101: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2102: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
2103:
2104: /* For Powell, parameters are in a vector p[] starting at p[1]
2105: so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
2106: p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.7 ! lievre 2107:
! 2108: if(mle==1){
1.2 lievre 2109: mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.7 ! lievre 2110: }
1.2 lievre 2111:
2112: /*--------- results files --------------*/
2113: fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);
2114:
2115: jk=1;
2116: fprintf(ficres,"# Parameters\n");
2117: printf("# Parameters\n");
2118: for(i=1,jk=1; i <=nlstate; i++){
2119: for(k=1; k <=(nlstate+ndeath); k++){
2120: if (k != i)
2121: {
2122: printf("%d%d ",i,k);
2123: fprintf(ficres,"%1d%1d ",i,k);
2124: for(j=1; j <=ncovmodel; j++){
2125: printf("%f ",p[jk]);
2126: fprintf(ficres,"%f ",p[jk]);
2127: jk++;
2128: }
2129: printf("\n");
2130: fprintf(ficres,"\n");
2131: }
2132: }
2133: }
1.7 ! lievre 2134: if(mle==1){
1.2 lievre 2135: /* Computing hessian and covariance matrix */
2136: ftolhess=ftol; /* Usually correct */
2137: hesscov(matcov, p, npar, delti, ftolhess, func);
1.7 ! lievre 2138: }
1.2 lievre 2139: fprintf(ficres,"# Scales\n");
2140: printf("# Scales\n");
2141: for(i=1,jk=1; i <=nlstate; i++){
2142: for(j=1; j <=nlstate+ndeath; j++){
2143: if (j!=i) {
2144: fprintf(ficres,"%1d%1d",i,j);
2145: printf("%1d%1d",i,j);
2146: for(k=1; k<=ncovmodel;k++){
2147: printf(" %.5e",delti[jk]);
2148: fprintf(ficres," %.5e",delti[jk]);
2149: jk++;
2150: }
2151: printf("\n");
2152: fprintf(ficres,"\n");
2153: }
2154: }
2155: }
2156:
2157: k=1;
2158: fprintf(ficres,"# Covariance\n");
2159: printf("# Covariance\n");
2160: for(i=1;i<=npar;i++){
2161: /* if (k>nlstate) k=1;
2162: i1=(i-1)/(ncovmodel*nlstate)+1;
2163: fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
2164: printf("%s%d%d",alph[k],i1,tab[i]);*/
2165: fprintf(ficres,"%3d",i);
2166: printf("%3d",i);
2167: for(j=1; j<=i;j++){
2168: fprintf(ficres," %.5e",matcov[i][j]);
2169: printf(" %.5e",matcov[i][j]);
2170: }
2171: fprintf(ficres,"\n");
2172: printf("\n");
2173: k++;
2174: }
2175:
2176: while((c=getc(ficpar))=='#' && c!= EOF){
2177: ungetc(c,ficpar);
2178: fgets(line, MAXLINE, ficpar);
2179: puts(line);
2180: fputs(line,ficparo);
2181: }
2182: ungetc(c,ficpar);
2183:
2184: fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
2185:
2186: if (fage <= 2) {
2187: bage = agemin;
2188: fage = agemax;
2189: }
2190:
2191: fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
2192: fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
1.7 ! lievre 2193:
! 2194:
1.2 lievre 2195: /*------------ gnuplot -------------*/
2196: chdir(pathcd);
2197: if((ficgp=fopen("graph.plt","w"))==NULL) {
1.5 lievre 2198: printf("Problem with file graph.gp");goto end;
1.2 lievre 2199: }
2200: #ifdef windows
2201: fprintf(ficgp,"cd \"%s\" \n",pathc);
2202: #endif
1.7 ! lievre 2203: m=pow(2,cptcoveff);
1.2 lievre 2204:
2205: /* 1eme*/
2206: for (cpt=1; cpt<= nlstate ; cpt ++) {
2207: for (k1=1; k1<= m ; k1 ++) {
2208:
2209: #ifdef windows
2210: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);
2211: #endif
2212: #ifdef unix
2213: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);
2214: #endif
2215:
2216: for (i=1; i<= nlstate ; i ++) {
2217: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2218: else fprintf(ficgp," \%%*lf (\%%*lf)");
2219: }
2220: fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
2221: for (i=1; i<= nlstate ; i ++) {
2222: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2223: else fprintf(ficgp," \%%*lf (\%%*lf)");
2224: }
2225: fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
2226: for (i=1; i<= nlstate ; i ++) {
2227: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2228: else fprintf(ficgp," \%%*lf (\%%*lf)");
2229: }
2230: fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
2231: #ifdef unix
2232: fprintf(ficgp,"\nset ter gif small size 400,300");
2233: #endif
2234: fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2235: }
2236: }
2237: /*2 eme*/
2238:
2239: for (k1=1; k1<= m ; k1 ++) {
2240: fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);
2241:
2242: for (i=1; i<= nlstate+1 ; i ++) {
2243: k=2*i;
2244: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
2245: for (j=1; j<= nlstate+1 ; j ++) {
2246: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2247: else fprintf(ficgp," \%%*lf (\%%*lf)");
2248: }
2249: if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
2250: else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
2251: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
2252: for (j=1; j<= nlstate+1 ; j ++) {
2253: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2254: else fprintf(ficgp," \%%*lf (\%%*lf)");
2255: }
2256: fprintf(ficgp,"\" t\"\" w l 0,");
2257: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
2258: for (j=1; j<= nlstate+1 ; j ++) {
2259: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2260: else fprintf(ficgp," \%%*lf (\%%*lf)");
2261: }
2262: if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
2263: else fprintf(ficgp,"\" t\"\" w l 0,");
2264: }
2265: fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
2266: }
2267:
2268: /*3eme*/
2269:
1.5 lievre 2270: for (k1=1; k1<= m ; k1 ++) {
1.2 lievre 2271: for (cpt=1; cpt<= nlstate ; cpt ++) {
2272: k=2+nlstate*(cpt-1);
2273: fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);
2274: for (i=1; i< nlstate ; i ++) {
2275: fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);
2276: }
2277: fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2278: }
1.5 lievre 2279: }
1.2 lievre 2280:
2281: /* CV preval stat */
1.5 lievre 2282: for (k1=1; k1<= m ; k1 ++) {
1.2 lievre 2283: for (cpt=1; cpt<nlstate ; cpt ++) {
2284: k=3;
2285: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);
2286: for (i=1; i< nlstate ; i ++)
2287: fprintf(ficgp,"+$%d",k+i+1);
2288: fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
2289:
2290: l=3+(nlstate+ndeath)*cpt;
2291: fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
2292: for (i=1; i< nlstate ; i ++) {
2293: l=3+(nlstate+ndeath)*cpt;
2294: fprintf(ficgp,"+$%d",l+i+1);
2295: }
2296: fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);
2297: fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2298: }
2299: }
1.5 lievre 2300:
1.2 lievre 2301: /* proba elementaires */
1.5 lievre 2302: for(i=1,jk=1; i <=nlstate; i++){
1.2 lievre 2303: for(k=1; k <=(nlstate+ndeath); k++){
2304: if (k != i) {
2305: for(j=1; j <=ncovmodel; j++){
1.5 lievre 2306: /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/
2307: /*fprintf(ficgp,"%s",alph[1]);*/
2308: fprintf(ficgp,"p%d=%f ",jk,p[jk]);
1.2 lievre 2309: jk++;
2310: fprintf(ficgp,"\n");
2311: }
2312: }
2313: }
1.5 lievre 2314: }
2315:
1.2 lievre 2316: for(jk=1; jk <=m; jk++) {
2317: fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot [%.f:%.f] ",agemin,agemax);
1.5 lievre 2318: i=1;
2319: for(k2=1; k2<=nlstate; k2++) {
2320: k3=i;
2321: for(k=1; k<=(nlstate+ndeath); k++) {
2322: if (k != k2){
2323: fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
1.7 ! lievre 2324: ij=1;
! 2325: for(j=3; j <=ncovmodel; j++) {
! 2326: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
! 2327: fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
! 2328: ij++;
! 2329: }
! 2330: else
1.6 lievre 2331: fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
1.7 ! lievre 2332: }
! 2333: fprintf(ficgp,")/(1");
1.6 lievre 2334:
2335: for(k1=1; k1 <=nlstate; k1++){
2336: fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
1.7 ! lievre 2337: ij=1;
! 2338: for(j=3; j <=ncovmodel; j++){
! 2339: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
! 2340: fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
! 2341: ij++;
! 2342: }
! 2343: else
1.6 lievre 2344: fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
1.7 ! lievre 2345: }
1.6 lievre 2346: fprintf(ficgp,")");
1.5 lievre 2347: }
2348: fprintf(ficgp,") t \"p%d%d\" ", k2,k);
2349: if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
1.6 lievre 2350: i=i+ncovmodel;
1.5 lievre 2351: }
2352: }
2353: }
1.6 lievre 2354: fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);
2355: }
1.5 lievre 2356:
2357: fclose(ficgp);
2358:
2359: chdir(path);
1.2 lievre 2360: free_matrix(agev,1,maxwav,1,imx);
2361: free_ivector(wav,1,imx);
2362: free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
2363: free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
2364:
2365: free_imatrix(s,1,maxwav+1,1,n);
2366:
2367:
2368: free_ivector(num,1,n);
2369: free_vector(agedc,1,n);
2370: free_vector(weight,1,n);
2371: /*free_matrix(covar,1,NCOVMAX,1,n);*/
2372: fclose(ficparo);
2373: fclose(ficres);
1.7 ! lievre 2374: /* }*/
1.2 lievre 2375:
2376: /*________fin mle=1_________*/
2377:
2378:
2379:
2380: /* No more information from the sample is required now */
2381: /* Reads comments: lines beginning with '#' */
2382: while((c=getc(ficpar))=='#' && c!= EOF){
2383: ungetc(c,ficpar);
2384: fgets(line, MAXLINE, ficpar);
2385: puts(line);
2386: fputs(line,ficparo);
2387: }
2388: ungetc(c,ficpar);
2389:
2390: fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
2391: printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);
2392: fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
2393: /*--------- index.htm --------*/
2394:
2395: if((fichtm=fopen("index.htm","w"))==NULL) {
2396: printf("Problem with index.htm \n");goto end;
2397: }
2398:
1.5 lievre 2399: fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n
1.2 lievre 2400: - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
2401: - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>
2402: - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>
2403: - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>
2404: - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>
2405: - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>
2406: - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>
2407: - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>
2408: - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);
2409:
2410: fprintf(fichtm," <li>Graphs</li>\n<p>");
2411:
1.7 ! lievre 2412: m=cptcoveff;
1.2 lievre 2413: if (cptcovn < 1) {m=1;ncodemax[1]=1;}
2414:
2415: j1=0;
2416: for(k1=1; k1<=m;k1++){
2417: for(i1=1; i1<=ncodemax[k1];i1++){
2418: j1++;
2419: if (cptcovn > 0) {
2420: fprintf(fichtm,"<hr>************ Results for covariates");
1.7 ! lievre 2421: for (cpt=1; cpt<=cptcoveff;cpt++)
! 2422: fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);
1.2 lievre 2423: fprintf(fichtm," ************\n<hr>");
2424: }
2425: fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
2426: <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
2427: for(cpt=1; cpt<nlstate;cpt++){
2428: fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
2429: <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
2430: }
2431: for(cpt=1; cpt<=nlstate;cpt++) {
2432: fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
2433: interval) in state (%d): v%s%d%d.gif <br>
2434: <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
2435: }
2436: for(cpt=1; cpt<=nlstate;cpt++) {
2437: fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
1.5 lievre 2438: <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
1.2 lievre 2439: }
2440: fprintf(fichtm,"\n<br>- Total life expectancy by age and
2441: health expectancies in states (1) and (2): e%s%d.gif<br>
2442: <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
2443: fprintf(fichtm,"\n</body>");
2444: }
2445: }
2446: fclose(fichtm);
2447:
2448: /*--------------- Prevalence limit --------------*/
2449:
2450: strcpy(filerespl,"pl");
2451: strcat(filerespl,fileres);
2452: if((ficrespl=fopen(filerespl,"w"))==NULL) {
2453: printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
2454: }
2455: printf("Computing prevalence limit: result on file '%s' \n", filerespl);
2456: fprintf(ficrespl,"#Prevalence limit\n");
2457: fprintf(ficrespl,"#Age ");
2458: for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
2459: fprintf(ficrespl,"\n");
2460:
2461: prlim=matrix(1,nlstate,1,nlstate);
2462: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2463: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2464: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2465: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2466: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
2467: k=0;
2468: agebase=agemin;
2469: agelim=agemax;
2470: ftolpl=1.e-10;
1.7 ! lievre 2471: i1=cptcoveff;
1.2 lievre 2472: if (cptcovn < 1){i1=1;}
2473:
2474: for(cptcov=1;cptcov<=i1;cptcov++){
2475: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2476: k=k+1;
2477: /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
1.6 lievre 2478: fprintf(ficrespl,"\n#******");
1.7 ! lievre 2479: for(j=1;j<=cptcoveff;j++)
! 2480: fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2481: fprintf(ficrespl,"******\n");
2482:
2483: for (age=agebase; age<=agelim; age++){
2484: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
2485: fprintf(ficrespl,"%.0f",age );
2486: for(i=1; i<=nlstate;i++)
2487: fprintf(ficrespl," %.5f", prlim[i][i]);
2488: fprintf(ficrespl,"\n");
2489: }
2490: }
2491: }
2492: fclose(ficrespl);
2493: /*------------- h Pij x at various ages ------------*/
2494:
2495: strcpy(filerespij,"pij"); strcat(filerespij,fileres);
2496: if((ficrespij=fopen(filerespij,"w"))==NULL) {
2497: printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
2498: }
2499: printf("Computing pij: result on file '%s' \n", filerespij);
2500:
2501: stepsize=(int) (stepm+YEARM-1)/YEARM;
2502: if (stepm<=24) stepsize=2;
2503:
2504: agelim=AGESUP;
2505: hstepm=stepsize*YEARM; /* Every year of age */
2506: hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
2507:
2508: k=0;
2509: for(cptcov=1;cptcov<=i1;cptcov++){
2510: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2511: k=k+1;
2512: fprintf(ficrespij,"\n#****** ");
1.7 ! lievre 2513: for(j=1;j<=cptcoveff;j++)
! 2514: fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2515: fprintf(ficrespij,"******\n");
2516:
2517: for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
2518: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
2519: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
2520: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2521: oldm=oldms;savm=savms;
2522: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
2523: fprintf(ficrespij,"# Age");
2524: for(i=1; i<=nlstate;i++)
2525: for(j=1; j<=nlstate+ndeath;j++)
2526: fprintf(ficrespij," %1d-%1d",i,j);
2527: fprintf(ficrespij,"\n");
2528: for (h=0; h<=nhstepm; h++){
2529: fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
2530: for(i=1; i<=nlstate;i++)
2531: for(j=1; j<=nlstate+ndeath;j++)
2532: fprintf(ficrespij," %.5f", p3mat[i][j][h]);
2533: fprintf(ficrespij,"\n");
2534: }
2535: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2536: fprintf(ficrespij,"\n");
2537: }
2538: }
2539: }
2540:
2541: fclose(ficrespij);
2542:
2543: /*---------- Health expectancies and variances ------------*/
2544:
2545: strcpy(filerest,"t");
2546: strcat(filerest,fileres);
2547: if((ficrest=fopen(filerest,"w"))==NULL) {
2548: printf("Problem with total LE resultfile: %s\n", filerest);goto end;
2549: }
2550: printf("Computing Total LEs with variances: file '%s' \n", filerest);
2551:
2552:
2553: strcpy(filerese,"e");
2554: strcat(filerese,fileres);
2555: if((ficreseij=fopen(filerese,"w"))==NULL) {
2556: printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
2557: }
2558: printf("Computing Health Expectancies: result on file '%s' \n", filerese);
2559:
2560: strcpy(fileresv,"v");
2561: strcat(fileresv,fileres);
2562: if((ficresvij=fopen(fileresv,"w"))==NULL) {
2563: printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
2564: }
2565: printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
2566:
2567: k=0;
2568: for(cptcov=1;cptcov<=i1;cptcov++){
2569: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2570: k=k+1;
2571: fprintf(ficrest,"\n#****** ");
1.7 ! lievre 2572: for(j=1;j<=cptcoveff;j++)
! 2573: fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2574: fprintf(ficrest,"******\n");
2575:
2576: fprintf(ficreseij,"\n#****** ");
1.7 ! lievre 2577: for(j=1;j<=cptcoveff;j++)
1.2 lievre 2578: fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
2579: fprintf(ficreseij,"******\n");
2580:
2581: fprintf(ficresvij,"\n#****** ");
1.7 ! lievre 2582: for(j=1;j<=cptcoveff;j++)
1.2 lievre 2583: fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
2584: fprintf(ficresvij,"******\n");
2585:
2586: eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
2587: oldm=oldms;savm=savms;
2588: evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);
2589: vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
2590: oldm=oldms;savm=savms;
2591: varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
2592:
2593: fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
2594: for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
2595: fprintf(ficrest,"\n");
2596:
2597: hf=1;
2598: if (stepm >= YEARM) hf=stepm/YEARM;
2599: epj=vector(1,nlstate+1);
2600: for(age=bage; age <=fage ;age++){
2601: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
2602: fprintf(ficrest," %.0f",age);
2603: for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
2604: for(i=1, epj[j]=0.;i <=nlstate;i++) {
2605: epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];
2606: }
2607: epj[nlstate+1] +=epj[j];
2608: }
2609: for(i=1, vepp=0.;i <=nlstate;i++)
2610: for(j=1;j <=nlstate;j++)
2611: vepp += vareij[i][j][(int)age];
2612: fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));
2613: for(j=1;j <=nlstate;j++){
2614: fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));
2615: }
2616: fprintf(ficrest,"\n");
2617: }
2618: }
2619: }
2620:
2621: fclose(ficreseij);
2622: fclose(ficresvij);
2623: fclose(ficrest);
2624: fclose(ficpar);
2625: free_vector(epj,1,nlstate+1);
1.5 lievre 2626: /* scanf("%d ",i); */
1.2 lievre 2627:
2628: /*------- Variance limit prevalence------*/
2629:
2630: strcpy(fileresvpl,"vpl");
2631: strcat(fileresvpl,fileres);
2632: if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
2633: printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
2634: exit(0);
2635: }
2636: printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
2637:
2638: k=0;
2639: for(cptcov=1;cptcov<=i1;cptcov++){
2640: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2641: k=k+1;
2642: fprintf(ficresvpl,"\n#****** ");
1.7 ! lievre 2643: for(j=1;j<=cptcoveff;j++)
! 2644: fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2645: fprintf(ficresvpl,"******\n");
2646:
2647: varpl=matrix(1,nlstate,(int) bage, (int) fage);
2648: oldm=oldms;savm=savms;
2649: varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
2650: }
2651: }
2652:
2653: fclose(ficresvpl);
2654:
2655: /*---------- End : free ----------------*/
2656: free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
2657:
2658: free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
2659: free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
2660:
2661:
2662: free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
2663: free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
2664: free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
2665: free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
2666:
2667: free_matrix(matcov,1,npar,1,npar);
2668: free_vector(delti,1,npar);
2669:
2670: free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
2671:
2672: printf("End of Imach\n");
2673: /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
2674:
2675: /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
2676: /*printf("Total time was %d uSec.\n", total_usecs);*/
2677: /*------ End -----------*/
2678:
2679: end:
2680: #ifdef windows
2681: chdir(pathcd);
2682: #endif
1.3 lievre 2683: system("wgnuplot graph.plt");
1.2 lievre 2684:
2685: #ifdef windows
2686: while (z[0] != 'q') {
2687: chdir(pathcd);
2688: printf("\nType e to edit output files, c to start again, and q for exiting: ");
2689: scanf("%s",z);
2690: if (z[0] == 'c') system("./imach");
2691: else if (z[0] == 'e') {
2692: chdir(path);
2693: system("index.htm");
2694: }
2695: else if (z[0] == 'q') exit(0);
2696: }
2697: #endif
2698: }
2699:
2700:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>